refactor: more simp to simp only
This commit is contained in:
parent
2c00ebba9b
commit
2792027a7f
9 changed files with 59 additions and 50 deletions
|
@ -129,7 +129,7 @@ theorem generic_case {S : (PureU1 (2 * n.succ)).Sols} (h : GenericCase S) :
|
|||
· exact hS
|
||||
· have h := h g f hS
|
||||
rw [anomalyFree_param _ _ hS] at h
|
||||
simp at h
|
||||
simp only [Nat.succ_eq_add_one, accCubeTriLinSymm_toFun_apply_apply, ne_eq, neg_eq_zero] at h
|
||||
exact h
|
||||
|
||||
lemma special_case_lineInCubic {S : (PureU1 (2 * n.succ)).Sols}
|
||||
|
@ -141,10 +141,9 @@ lemma special_case_lineInCubic {S : (PureU1 (2 * n.succ)).Sols}
|
|||
have h := h g f hS
|
||||
rw [accCubeTriLinSymm.map_smul₁, accCubeTriLinSymm.map_smul₂,
|
||||
accCubeTriLinSymm.map_smul₃, accCubeTriLinSymm.map_smul₁, accCubeTriLinSymm.map_smul₂,
|
||||
accCubeTriLinSymm.map_smul₃]
|
||||
rw [h]
|
||||
accCubeTriLinSymm.map_smul₃, h]
|
||||
rw [anomalyFree_param _ _ hS] at h
|
||||
simp at h
|
||||
simp only [Nat.succ_eq_add_one, accCubeTriLinSymm_toFun_apply_apply, neg_eq_zero] at h
|
||||
change accCubeTriLinSymm (P! f) (P! f) (P g) = 0 at h
|
||||
erw [h]
|
||||
simp
|
||||
|
|
|
@ -26,9 +26,7 @@ namespace PureU1
|
|||
@[simp]
|
||||
def PermGroup (n : ℕ) := Equiv.Perm (Fin n)
|
||||
|
||||
instance {n : ℕ} : Group (PermGroup n) := by
|
||||
simp [PermGroup]
|
||||
infer_instance
|
||||
instance {n : ℕ} : Group (PermGroup n) := Equiv.Perm.permGroup
|
||||
|
||||
section Charges
|
||||
|
||||
|
@ -74,12 +72,12 @@ def FamilyPermutations (n : ℕ) : ACCSystemGroupAction (PureU1 n) where
|
|||
rep := permCharges
|
||||
linearInvariant := by
|
||||
intro i
|
||||
simp at i
|
||||
simp only [PureU1_numberLinear] at i
|
||||
match i with
|
||||
| 0 => exact accGrav_invariant
|
||||
quadInvariant := by
|
||||
intro i
|
||||
simp at i
|
||||
simp only [PureU1_numberQuadratic] at i
|
||||
exact Fin.elim0 i
|
||||
cubicInvariant := accCube_invariant
|
||||
|
||||
|
@ -134,7 +132,7 @@ lemma pairSwap_inv_snd {n : ℕ} (i j : Fin n) : (pairSwap i j).invFun j = i :=
|
|||
|
||||
lemma pairSwap_other {n : ℕ} (i j k : Fin n) (hik : i ≠ k) (hjk : j ≠ k) :
|
||||
(pairSwap i j).toFun k = k := by
|
||||
simp [pairSwap]
|
||||
simp only [pairSwap, Equiv.toFun_as_coe, Equiv.coe_fn_mk]
|
||||
split
|
||||
· rename_i h
|
||||
exact False.elim (hik (id (Eq.symm h)))
|
||||
|
@ -207,8 +205,8 @@ lemma permTwo_snd : (permTwo hij hij').toFun j' = j := by
|
|||
have ht := Equiv.extendSubtype_apply_of_mem
|
||||
((permTwoInj hij').toEquivRange.symm.trans
|
||||
(permTwoInj hij).toEquivRange) j' (permTwoInj_snd hij')
|
||||
simp at ht
|
||||
simp [ht, permTwoInj_snd_apply]
|
||||
simp only [Equiv.trans_apply, Function.Embedding.toEquivRange_apply] at ht
|
||||
simp only [Equiv.toFun_as_coe, ht, permTwoInj_snd_apply, Fin.isValue]
|
||||
rfl
|
||||
|
||||
end permTwo
|
||||
|
@ -266,8 +264,8 @@ lemma permThree_fst : (permThree hij hjk hik hij' hjk' hik').toFun i' = i := by
|
|||
have ht := Equiv.extendSubtype_apply_of_mem
|
||||
((permThreeInj hij' hjk' hik').toEquivRange.symm.trans
|
||||
(permThreeInj hij hjk hik).toEquivRange) i' (permThreeInj_fst hij' hjk' hik')
|
||||
simp at ht
|
||||
simp [ht, permThreeInj_fst_apply]
|
||||
simp only [Equiv.trans_apply, Function.Embedding.toEquivRange_apply] at ht
|
||||
simp only [Equiv.toFun_as_coe, ht, permThreeInj_fst_apply, Fin.isValue]
|
||||
rfl
|
||||
|
||||
lemma permThree_snd : (permThree hij hjk hik hij' hjk' hik').toFun j' = j := by
|
||||
|
@ -275,8 +273,8 @@ lemma permThree_snd : (permThree hij hjk hik hij' hjk' hik').toFun j' = j := by
|
|||
have ht := Equiv.extendSubtype_apply_of_mem
|
||||
((permThreeInj hij' hjk' hik').toEquivRange.symm.trans
|
||||
(permThreeInj hij hjk hik).toEquivRange) j' (permThreeInj_snd hij' hjk' hik')
|
||||
simp at ht
|
||||
simp [ht, permThreeInj_snd_apply]
|
||||
simp only [Equiv.trans_apply, Function.Embedding.toEquivRange_apply] at ht
|
||||
simp only [Equiv.toFun_as_coe, ht, permThreeInj_snd_apply, Fin.isValue]
|
||||
rfl
|
||||
|
||||
lemma permThree_thd : (permThree hij hjk hik hij' hjk' hik').toFun k' = k := by
|
||||
|
@ -284,8 +282,8 @@ lemma permThree_thd : (permThree hij hjk hik hij' hjk' hik').toFun k' = k := by
|
|||
have ht := Equiv.extendSubtype_apply_of_mem
|
||||
((permThreeInj hij' hjk' hik').toEquivRange.symm.trans
|
||||
(permThreeInj hij hjk hik).toEquivRange) k' (permThreeInj_thd hij' hjk' hik')
|
||||
simp at ht
|
||||
simp [ht, permThreeInj_thd_apply]
|
||||
simp only [Equiv.trans_apply, Function.Embedding.toEquivRange_apply] at ht
|
||||
simp only [Equiv.toFun_as_coe, ht, permThreeInj_thd_apply, Fin.isValue]
|
||||
rfl
|
||||
|
||||
end permThree
|
||||
|
@ -299,7 +297,7 @@ lemma Prop_two (P : ℚ × ℚ → Prop) {S : (PureU1 n).LinSols}
|
|||
intro i j hij
|
||||
have h1 := h (permTwo hij hab).symm
|
||||
rw [FamilyPermutations_anomalyFreeLinear_apply, FamilyPermutations_anomalyFreeLinear_apply] at h1
|
||||
simp at h1
|
||||
simp only [Equiv.invFun_as_coe, Equiv.symm_symm] at h1
|
||||
change P
|
||||
(S.val ((permTwo hij hab).toFun a),
|
||||
S.val ((permTwo hij hab).toFun b)) at h1
|
||||
|
@ -317,7 +315,7 @@ lemma Prop_three (P : ℚ × ℚ × ℚ → Prop) {S : (PureU1 n).LinSols}
|
|||
have h1 := h (permThree hij hjk hik hab hbc hac).symm
|
||||
rw [FamilyPermutations_anomalyFreeLinear_apply, FamilyPermutations_anomalyFreeLinear_apply,
|
||||
FamilyPermutations_anomalyFreeLinear_apply] at h1
|
||||
simp at h1
|
||||
simp only [Equiv.invFun_as_coe, Equiv.symm_symm] at h1
|
||||
change P
|
||||
(S.val ((permThree hij hjk hik hab hbc hac).toFun a),
|
||||
S.val ((permThree hij hjk hik hab hbc hac).toFun b),
|
||||
|
|
|
@ -53,7 +53,7 @@ lemma sort_zero {n : ℕ} (S : (PureU1 n).Charges) (hS : sort S = 0) : S = 0 :=
|
|||
rfl
|
||||
have hi := hj ((Tuple.sort S).invFun i)
|
||||
rw [sort_apply] at hi
|
||||
simp at hi
|
||||
simp only [PureU1_numberCharges, Equiv.invFun_as_coe, Equiv.apply_symm_apply] at hi
|
||||
rw [hi]
|
||||
rfl
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue