refactor: Normal order results

This commit is contained in:
jstoobysmith 2025-01-22 06:26:28 +00:00
parent 509d536577
commit 27cbb03275
2 changed files with 209 additions and 149 deletions

View file

@ -10,17 +10,19 @@ import HepLean.PerturbationTheory.Koszul.KoszulSign
# Normal Ordering in the CrAnAlgebra
In the module
`HepLean.PerturbationTheory.FieldSpecification.NormalOrder`
we defined the normal ordering of a list of `CrAnStates`.
In this module we extend the normal ordering to a linear map on `CrAnAlgebra`.
We derive properties of this normal ordering.
-/
namespace FieldSpecification
variable {𝓕 : FieldSpecification}
open FieldStatistic
/-!
## Normal order on the CrAnAlgebra
-/
namespace CrAnAlgebra
noncomputable section
@ -51,6 +53,12 @@ lemma normalOrder_one : normalOrder (𝓕 := 𝓕) 1 = 1 := by
rw [← ofCrAnList_nil, normalOrder_ofCrAnList]
simp
/-!
## Normal ordering with a creation operator on the left or annihilation on the right
-/
lemma normalOrder_ofCrAnList_cons_create (φ : 𝓕.CrAnStates)
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.create) (φs : List 𝓕.CrAnStates) :
normalOrder (ofCrAnList (φ :: φs)) =
@ -95,83 +103,6 @@ lemma normalOrder_mul_annihilate (φ : 𝓕.CrAnStates)
rw [← ofCrAnList_singleton, ← ofCrAnList_append, ofCrAnList_singleton]
rw [normalOrder_ofCrAnList_append_annihilate φ hφ]
lemma normalOrder_swap_create_annihlate_ofCrAnList_ofCrAnList (φc φa : 𝓕.CrAnStates)
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create)
(hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(φs φs' : List 𝓕.CrAnStates) :
normalOrder (ofCrAnList φs' * ofCrAnState φc * ofCrAnState φa * ofCrAnList φs) =
𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
normalOrder (ofCrAnList φs' * ofCrAnState φa * ofCrAnState φc * ofCrAnList φs) := by
rw [mul_assoc, mul_assoc, ← ofCrAnList_cons, ← ofCrAnList_cons, ← ofCrAnList_append]
rw [normalOrder_ofCrAnList, normalOrderSign_swap_create_annihlate φc φa hφc hφa]
rw [normalOrderList_swap_create_annihlate φc φa hφc hφa]
rw [← smul_smul, ← normalOrder_ofCrAnList]
congr
rw [ofCrAnList_append, ofCrAnList_cons, ofCrAnList_cons]
noncomm_ring
lemma normalOrder_swap_create_annihlate_ofCrAnList (φc φa : 𝓕.CrAnStates)
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create)
(hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(φs : List 𝓕.CrAnStates) (a : 𝓕.CrAnAlgebra) :
normalOrder (ofCrAnList φs * ofCrAnState φc * ofCrAnState φa * a) =
𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
normalOrder (ofCrAnList φs * ofCrAnState φa * ofCrAnState φc * a) := by
change (normalOrder ∘ₗ mulLinearMap (ofCrAnList φs * ofCrAnState φc * ofCrAnState φa)) a =
(smulLinearMap _ ∘ₗ normalOrder ∘ₗ
mulLinearMap (ofCrAnList φs * ofCrAnState φa * ofCrAnState φc)) a
refine LinearMap.congr_fun ?h a
apply ofCrAnListBasis.ext
intro l
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, ofListBasis_eq_ofList,
LinearMap.coe_comp, Function.comp_apply, instCommGroup.eq_1]
rw [normalOrder_swap_create_annihlate_ofCrAnList_ofCrAnList φc φa hφc hφa]
rfl
lemma normalOrder_swap_create_annihlate (φc φa : 𝓕.CrAnStates)
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create)
(hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(a b : 𝓕.CrAnAlgebra) :
normalOrder (a * ofCrAnState φc * ofCrAnState φa * b) =
𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
normalOrder (a * ofCrAnState φa * ofCrAnState φc * b) := by
rw [mul_assoc, mul_assoc, mul_assoc, mul_assoc]
change (normalOrder ∘ₗ mulLinearMap.flip (ofCrAnState φc * (ofCrAnState φa * b))) a =
(smulLinearMap (𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa)) ∘ₗ
normalOrder ∘ₗ mulLinearMap.flip (ofCrAnState φa * (ofCrAnState φc * b))) a
apply LinearMap.congr_fun
apply ofCrAnListBasis.ext
intro l
simp only [mulLinearMap, ofListBasis_eq_ofList, LinearMap.coe_comp, Function.comp_apply,
LinearMap.flip_apply, LinearMap.coe_mk, AddHom.coe_mk, instCommGroup.eq_1]
repeat rw [← mul_assoc]
rw [normalOrder_swap_create_annihlate_ofCrAnList φc φa hφc hφa]
rfl
lemma normalOrder_superCommute_create_annihilate (φc φa : 𝓕.CrAnStates)
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create)
(hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(a b : 𝓕.CrAnAlgebra) :
normalOrder (a * superCommute (ofCrAnState φc) (ofCrAnState φa) * b) = 0 := by
rw [superCommute_ofCrAnState_ofCrAnState]
simp only [instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [mul_sub, sub_mul, map_sub, ← smul_mul_assoc]
rw [← mul_assoc, ← mul_assoc]
rw [normalOrder_swap_create_annihlate φc φa hφc hφa]
simp only [FieldStatistic.instCommGroup.eq_1, Algebra.mul_smul_comm, Algebra.smul_mul_assoc,
map_smul, sub_self]
lemma normalOrder_superCommute_annihilate_create (φc φa : 𝓕.CrAnStates)
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create)
(hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(a b : 𝓕.CrAnAlgebra) :
normalOrder (a * superCommute (ofCrAnState φa) (ofCrAnState φc) * b) = 0 := by
rw [superCommute_ofCrAnState_ofCrAnState_symm]
simp only [instCommGroup.eq_1, neg_smul, mul_neg, Algebra.mul_smul_comm, neg_mul,
Algebra.smul_mul_assoc, map_neg, map_smul, neg_eq_zero, smul_eq_zero]
apply Or.inr
exact normalOrder_superCommute_create_annihilate φc φa hφc hφa a b
lemma normalOrder_crPart_mul (φ : 𝓕.States) (a : CrAnAlgebra 𝓕) :
normalOrder (crPart (StateAlgebra.ofState φ) * a) =
crPart (StateAlgebra.ofState φ) * normalOrder a := by
@ -205,6 +136,85 @@ lemma normalOrder_mul_anPart (φ : 𝓕.States) (a : CrAnAlgebra 𝓕) :
refine normalOrder_mul_annihilate _ ?_ _
simp [crAnStatesToCreateAnnihilate]
/-!
## Normal ordering for an adjacent creation and annihliation state
The main result of this section is `normalOrder_superCommute_annihilate_create`.
-/
lemma normalOrder_swap_create_annihlate_ofCrAnList_ofCrAnList (φc φa : 𝓕.CrAnStates)
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(φs φs' : List 𝓕.CrAnStates) :
normalOrder (ofCrAnList φs' * ofCrAnState φc * ofCrAnState φa * ofCrAnList φs) =
𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
normalOrder (ofCrAnList φs' * ofCrAnState φa * ofCrAnState φc * ofCrAnList φs) := by
rw [mul_assoc, mul_assoc, ← ofCrAnList_cons, ← ofCrAnList_cons, ← ofCrAnList_append]
rw [normalOrder_ofCrAnList, normalOrderSign_swap_create_annihlate φc φa hφc hφa]
rw [normalOrderList_swap_create_annihlate φc φa hφc hφa]
rw [← smul_smul, ← normalOrder_ofCrAnList]
congr
rw [ofCrAnList_append, ofCrAnList_cons, ofCrAnList_cons]
noncomm_ring
lemma normalOrder_swap_create_annihlate_ofCrAnList (φc φa : 𝓕.CrAnStates)
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(φs : List 𝓕.CrAnStates) (a : 𝓕.CrAnAlgebra) :
normalOrder (ofCrAnList φs * ofCrAnState φc * ofCrAnState φa * a) =
𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
normalOrder (ofCrAnList φs * ofCrAnState φa * ofCrAnState φc * a) := by
change (normalOrder ∘ₗ mulLinearMap (ofCrAnList φs * ofCrAnState φc * ofCrAnState φa)) a =
(smulLinearMap _ ∘ₗ normalOrder ∘ₗ
mulLinearMap (ofCrAnList φs * ofCrAnState φa * ofCrAnState φc)) a
refine LinearMap.congr_fun ?h a
apply ofCrAnListBasis.ext
intro l
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, ofListBasis_eq_ofList,
LinearMap.coe_comp, Function.comp_apply, instCommGroup.eq_1]
rw [normalOrder_swap_create_annihlate_ofCrAnList_ofCrAnList φc φa hφc hφa]
rfl
lemma normalOrder_swap_create_annihlate (φc φa : 𝓕.CrAnStates)
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(a b : 𝓕.CrAnAlgebra) :
normalOrder (a * ofCrAnState φc * ofCrAnState φa * b) =
𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
normalOrder (a * ofCrAnState φa * ofCrAnState φc * b) := by
rw [mul_assoc, mul_assoc, mul_assoc, mul_assoc]
change (normalOrder ∘ₗ mulLinearMap.flip (ofCrAnState φc * (ofCrAnState φa * b))) a =
(smulLinearMap (𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa)) ∘ₗ
normalOrder ∘ₗ mulLinearMap.flip (ofCrAnState φa * (ofCrAnState φc * b))) a
apply LinearMap.congr_fun
apply ofCrAnListBasis.ext
intro l
simp only [mulLinearMap, ofListBasis_eq_ofList, LinearMap.coe_comp, Function.comp_apply,
LinearMap.flip_apply, LinearMap.coe_mk, AddHom.coe_mk, instCommGroup.eq_1]
repeat rw [← mul_assoc]
rw [normalOrder_swap_create_annihlate_ofCrAnList φc φa hφc hφa]
rfl
lemma normalOrder_superCommute_create_annihilate (φc φa : 𝓕.CrAnStates)
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(a b : 𝓕.CrAnAlgebra) :
normalOrder (a * superCommute (ofCrAnState φc) (ofCrAnState φa) * b) = 0 := by
rw [superCommute_ofCrAnState_ofCrAnState]
simp only [instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [mul_sub, sub_mul, map_sub, ← smul_mul_assoc]
rw [← mul_assoc, ← mul_assoc]
rw [normalOrder_swap_create_annihlate φc φa hφc hφa]
simp only [FieldStatistic.instCommGroup.eq_1, Algebra.mul_smul_comm, Algebra.smul_mul_assoc,
map_smul, sub_self]
lemma normalOrder_superCommute_annihilate_create (φc φa : 𝓕.CrAnStates)
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(a b : 𝓕.CrAnAlgebra) :
normalOrder (a * superCommute (ofCrAnState φa) (ofCrAnState φc) * b) = 0 := by
rw [superCommute_ofCrAnState_ofCrAnState_symm]
simp only [instCommGroup.eq_1, neg_smul, mul_neg, Algebra.mul_smul_comm, neg_mul,
Algebra.smul_mul_assoc, map_neg, map_smul, neg_eq_zero, smul_eq_zero]
apply Or.inr
exact normalOrder_superCommute_create_annihilate φc φa hφc hφa a b
lemma normalOrder_swap_crPart_anPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra 𝓕) :
normalOrder (a * (crPart (StateAlgebra.ofState φ)) * (anPart (StateAlgebra.ofState φ')) * b) =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
@ -240,6 +250,15 @@ lemma normalOrder_swap_crPart_anPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra
rfl
rfl
/-!
## Normal ordering for an anPart and crPart
Using the results from above.
-/
lemma normalOrder_swap_anPart_crPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra 𝓕) :
normalOrder (a * (anPart (StateAlgebra.ofState φ)) * (crPart (StateAlgebra.ofState φ')) * b) =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • normalOrder (a * (crPart (StateAlgebra.ofState φ')) *
@ -290,11 +309,76 @@ lemma normalOrder_superCommute_anPart_crPart (φ φ' : 𝓕.States) (a b : CrAnA
simp only [anPart_posAsymp, crPart_position]
refine normalOrder_superCommute_annihilate_create _ _ (by rfl) (by rfl) _ _
/-!
## The normal ordering of a product of two states
-/
@[simp]
lemma normalOrder_crPart_mul_crPart (φ φ' : 𝓕.States) :
normalOrder (crPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ')) =
crPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ') := by
rw [normalOrder_crPart_mul]
conv_lhs => rw [← mul_one (crPart (StateAlgebra.ofState φ'))]
rw [normalOrder_crPart_mul, normalOrder_one]
simp
@[simp]
lemma normalOrder_anPart_mul_anPart (φ φ' : 𝓕.States) :
normalOrder (anPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ')) =
anPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') := by
rw [normalOrder_mul_anPart]
conv_lhs => rw [← one_mul (anPart (StateAlgebra.ofState φ))]
rw [normalOrder_mul_anPart, normalOrder_one]
simp
@[simp]
lemma normalOrder_crPart_mul_anPart (φ φ' : 𝓕.States) :
normalOrder (crPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ')) =
crPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') := by
rw [normalOrder_crPart_mul]
conv_lhs => rw [← one_mul (anPart (StateAlgebra.ofState φ'))]
rw [normalOrder_mul_anPart, normalOrder_one]
simp
@[simp]
lemma normalOrder_anPart_mul_crPart (φ φ' : 𝓕.States) :
normalOrder (anPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ')) =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
(crPart (StateAlgebra.ofState φ') * anPart (StateAlgebra.ofState φ)) := by
conv_lhs => rw [← one_mul (anPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ'))]
conv_lhs => rw [← mul_one (1 * (anPart (StateAlgebra.ofState φ) *
crPart (StateAlgebra.ofState φ')))]
rw [← mul_assoc, normalOrder_swap_anPart_crPart]
simp
lemma normalOrder_ofState_mul_ofState (φ φ' : 𝓕.States) :
normalOrder (ofState φ * ofState φ') =
crPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ') +
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
(crPart (StateAlgebra.ofState φ') * anPart (StateAlgebra.ofState φ)) +
crPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') +
anPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') := by
rw [ofState_eq_crPart_add_anPart, ofState_eq_crPart_add_anPart]
rw [mul_add, add_mul, add_mul]
simp only [map_add, normalOrder_crPart_mul_crPart, normalOrder_anPart_mul_crPart,
instCommGroup.eq_1, normalOrder_crPart_mul_anPart, normalOrder_anPart_mul_anPart]
abel
/-!
## Normal order with super commutors
-/
/-! TODO: Split the following two lemmas up into smaller parts. -/
lemma normalOrder_superCommute_ofCrAnList_create_create_ofCrAnList
(φc φc' : 𝓕.CrAnStates) (hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create)
(hφc' : 𝓕 |>ᶜ φc' = CreateAnnihilate.create) (φs φs' : List 𝓕.CrAnStates) :
(normalOrder (ofCrAnList φs *
superCommute (ofCrAnState φc) (ofCrAnState φc') * ofCrAnList φs')) =
superCommute (ofCrAnState φc) (ofCrAnState φc') * ofCrAnList φs')) =
normalOrderSign (φs ++ φc' :: φc :: φs') •
(ofCrAnList (createFilter φs) * superCommute (ofCrAnState φc) (ofCrAnState φc') *
ofCrAnList (createFilter φs') * ofCrAnList (annihilateFilter (φs ++ φs'))) := by
@ -440,56 +524,11 @@ lemma normalOrder_superCommute_ofCrAnList_annihilate_annihilate_ofCrAnList
rw [ofCrAnList_append, ofCrAnList_singleton, ofCrAnList_singleton]
rw [ofCrAnList_append, ofCrAnList_singleton, ofCrAnList_singleton, smul_mul_assoc]
@[simp]
lemma normalOrder_crPart_mul_crPart (φ φ' : 𝓕.States) :
normalOrder (crPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ')) =
crPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ') := by
rw [normalOrder_crPart_mul]
conv_lhs => rw [← mul_one (crPart (StateAlgebra.ofState φ'))]
rw [normalOrder_crPart_mul, normalOrder_one]
simp
/-!
@[simp]
lemma normalOrder_anPart_mul_anPart (φ φ' : 𝓕.States) :
normalOrder (anPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ')) =
anPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') := by
rw [normalOrder_mul_anPart]
conv_lhs => rw [← one_mul (anPart (StateAlgebra.ofState φ))]
rw [normalOrder_mul_anPart, normalOrder_one]
simp
## Super commututators involving a normal order.
@[simp]
lemma normalOrder_crPart_mul_anPart (φ φ' : 𝓕.States) :
normalOrder (crPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ')) =
crPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') := by
rw [normalOrder_crPart_mul]
conv_lhs => rw [← one_mul (anPart (StateAlgebra.ofState φ'))]
rw [normalOrder_mul_anPart, normalOrder_one]
simp
@[simp]
lemma normalOrder_anPart_mul_crPart (φ φ' : 𝓕.States) :
normalOrder (anPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ')) =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
(crPart (StateAlgebra.ofState φ') * anPart (StateAlgebra.ofState φ)) := by
conv_lhs => rw [← one_mul (anPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ'))]
conv_lhs => rw [← mul_one (1 * (anPart (StateAlgebra.ofState φ) *
crPart (StateAlgebra.ofState φ')))]
rw [← mul_assoc, normalOrder_swap_anPart_crPart]
simp
lemma normalOrder_ofState_mul_ofState (φ φ' : 𝓕.States) :
normalOrder (ofState φ * ofState φ') =
crPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ') +
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
(crPart (StateAlgebra.ofState φ') * anPart (StateAlgebra.ofState φ)) +
crPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') +
anPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') := by
rw [ofState_eq_crPart_add_anPart, ofState_eq_crPart_add_anPart]
rw [mul_add, add_mul, add_mul]
simp only [map_add, normalOrder_crPart_mul_crPart, normalOrder_anPart_mul_crPart,
instCommGroup.eq_1, normalOrder_crPart_mul_anPart, normalOrder_anPart_mul_anPart]
abel
-/
lemma ofCrAnList_superCommute_normalOrder_ofCrAnList (φs φs' : List 𝓕.CrAnStates) :
⟨ofCrAnList φs, normalOrder (ofCrAnList φs')⟩ₛca =
@ -509,6 +548,12 @@ lemma ofCrAnList_superCommute_normalOrder_ofStateList (φs : List 𝓕.CrAnState
rw [ofCrAnList_superCommute_normalOrder_ofCrAnList,
CrAnSection.statistics_eq_state_statistics]
/-!
## Multiplications with normal order written in terms of super commute.
-/
lemma ofCrAnList_mul_normalOrder_ofStateList_eq_superCommute (φs : List 𝓕.CrAnStates)
(φs' : List 𝓕.States) :
ofCrAnList φs * normalOrder (ofStateList φs') =