refactor: Rename superCommute for CrAnAlgebra
This commit is contained in:
parent
32aefb7eb7
commit
289050c829
13 changed files with 428 additions and 425 deletions
|
@ -120,7 +120,7 @@ lemma normalOrder_mul_anPart (φ : 𝓕.States) (a : CrAnAlgebra 𝓕) :
|
|||
|
||||
## Normal ordering for an adjacent creation and annihliation state
|
||||
|
||||
The main result of this section is `normalOrder_superCommute_annihilate_create`.
|
||||
The main result of this section is `normalOrder_superCommuteF_annihilate_create`.
|
||||
-/
|
||||
|
||||
lemma normalOrder_swap_create_annihlate_ofCrAnList_ofCrAnList (φc φa : 𝓕.CrAnStates)
|
||||
|
@ -163,23 +163,23 @@ lemma normalOrder_swap_create_annihlate (φc φa : 𝓕.CrAnStates)
|
|||
normalOrder_swap_create_annihlate_ofCrAnList φc φa hφc hφa]
|
||||
rfl
|
||||
|
||||
lemma normalOrder_superCommute_create_annihilate (φc φa : 𝓕.CrAnStates)
|
||||
lemma normalOrder_superCommuteF_create_annihilate (φc φa : 𝓕.CrAnStates)
|
||||
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
||||
(a b : 𝓕.CrAnAlgebra) :
|
||||
𝓝ᶠ(a * [ofCrAnState φc, ofCrAnState φa]ₛca * b) = 0 := by
|
||||
simp only [superCommute_ofCrAnState_ofCrAnState, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
simp only [superCommuteF_ofCrAnState_ofCrAnState, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [mul_sub, sub_mul, map_sub, ← smul_mul_assoc, ← mul_assoc, ← mul_assoc,
|
||||
normalOrder_swap_create_annihlate φc φa hφc hφa]
|
||||
simp
|
||||
|
||||
lemma normalOrder_superCommute_annihilate_create (φc φa : 𝓕.CrAnStates)
|
||||
lemma normalOrder_superCommuteF_annihilate_create (φc φa : 𝓕.CrAnStates)
|
||||
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
||||
(a b : 𝓕.CrAnAlgebra) :
|
||||
𝓝ᶠ(a * [ofCrAnState φa, ofCrAnState φc]ₛca * b) = 0 := by
|
||||
rw [superCommute_ofCrAnState_ofCrAnState_symm]
|
||||
rw [superCommuteF_ofCrAnState_ofCrAnState_symm]
|
||||
simp only [instCommGroup.eq_1, neg_smul, mul_neg, Algebra.mul_smul_comm, neg_mul,
|
||||
Algebra.smul_mul_assoc, map_neg, map_smul, neg_eq_zero, smul_eq_zero]
|
||||
exact Or.inr (normalOrder_superCommute_create_annihilate φc φa hφc hφa ..)
|
||||
exact Or.inr (normalOrder_superCommuteF_create_annihilate φc φa hφc hφa ..)
|
||||
|
||||
lemma normalOrder_swap_crPart_anPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra 𝓕) :
|
||||
𝓝ᶠ(a * (crPart φ) * (anPart φ') * b) =
|
||||
|
@ -223,43 +223,43 @@ lemma normalOrder_swap_anPart_crPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra
|
|||
(anPart φ) * b) := by
|
||||
simp [normalOrder_swap_crPart_anPart, smul_smul]
|
||||
|
||||
lemma normalOrder_superCommute_crPart_anPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra 𝓕) :
|
||||
𝓝ᶠ(a * superCommute
|
||||
lemma normalOrder_superCommuteF_crPart_anPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra 𝓕) :
|
||||
𝓝ᶠ(a * superCommuteF
|
||||
(crPart φ) (anPart φ') * b) = 0 := by
|
||||
match φ, φ' with
|
||||
| _, .inAsymp φ' => simp
|
||||
| .outAsymp φ', _ => simp
|
||||
| .position φ, .position φ' =>
|
||||
rw [crPart_position, anPart_position]
|
||||
exact normalOrder_superCommute_create_annihilate _ _ rfl rfl ..
|
||||
exact normalOrder_superCommuteF_create_annihilate _ _ rfl rfl ..
|
||||
| .inAsymp φ, .outAsymp φ' =>
|
||||
rw [crPart_negAsymp, anPart_posAsymp]
|
||||
exact normalOrder_superCommute_create_annihilate _ _ rfl rfl ..
|
||||
exact normalOrder_superCommuteF_create_annihilate _ _ rfl rfl ..
|
||||
| .inAsymp φ, .position φ' =>
|
||||
rw [crPart_negAsymp, anPart_position]
|
||||
exact normalOrder_superCommute_create_annihilate _ _ rfl rfl ..
|
||||
exact normalOrder_superCommuteF_create_annihilate _ _ rfl rfl ..
|
||||
| .position φ, .outAsymp φ' =>
|
||||
rw [crPart_position, anPart_posAsymp]
|
||||
exact normalOrder_superCommute_create_annihilate _ _ rfl rfl ..
|
||||
exact normalOrder_superCommuteF_create_annihilate _ _ rfl rfl ..
|
||||
|
||||
lemma normalOrder_superCommute_anPart_crPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra 𝓕) :
|
||||
𝓝ᶠ(a * superCommute
|
||||
lemma normalOrder_superCommuteF_anPart_crPart (φ φ' : 𝓕.States) (a b : CrAnAlgebra 𝓕) :
|
||||
𝓝ᶠ(a * superCommuteF
|
||||
(anPart φ) (crPart φ') * b) = 0 := by
|
||||
match φ, φ' with
|
||||
| .inAsymp φ', _ => simp
|
||||
| _, .outAsymp φ' => simp
|
||||
| .position φ, .position φ' =>
|
||||
rw [anPart_position, crPart_position]
|
||||
exact normalOrder_superCommute_annihilate_create _ _ rfl rfl ..
|
||||
exact normalOrder_superCommuteF_annihilate_create _ _ rfl rfl ..
|
||||
| .outAsymp φ', .inAsymp φ =>
|
||||
simp only [anPart_posAsymp, crPart_negAsymp]
|
||||
exact normalOrder_superCommute_annihilate_create _ _ rfl rfl ..
|
||||
exact normalOrder_superCommuteF_annihilate_create _ _ rfl rfl ..
|
||||
| .position φ', .inAsymp φ =>
|
||||
simp only [anPart_position, crPart_negAsymp]
|
||||
exact normalOrder_superCommute_annihilate_create _ _ rfl rfl ..
|
||||
exact normalOrder_superCommuteF_annihilate_create _ _ rfl rfl ..
|
||||
| .outAsymp φ, .position φ' =>
|
||||
simp only [anPart_posAsymp, crPart_position]
|
||||
exact normalOrder_superCommute_annihilate_create _ _ rfl rfl ..
|
||||
exact normalOrder_superCommuteF_annihilate_create _ _ rfl rfl ..
|
||||
|
||||
/-!
|
||||
|
||||
|
@ -325,14 +325,14 @@ lemma normalOrder_ofState_mul_ofState (φ φ' : 𝓕.States) :
|
|||
|
||||
TODO "Split the following two lemmas up into smaller parts."
|
||||
|
||||
lemma normalOrder_superCommute_ofCrAnList_create_create_ofCrAnList
|
||||
lemma normalOrder_superCommuteF_ofCrAnList_create_create_ofCrAnList
|
||||
(φc φc' : 𝓕.CrAnStates) (hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create)
|
||||
(hφc' : 𝓕 |>ᶜ φc' = CreateAnnihilate.create) (φs φs' : List 𝓕.CrAnStates) :
|
||||
(𝓝ᶠ(ofCrAnList φs * [ofCrAnState φc, ofCrAnState φc']ₛca * ofCrAnList φs')) =
|
||||
normalOrderSign (φs ++ φc' :: φc :: φs') •
|
||||
(ofCrAnList (createFilter φs) * [ofCrAnState φc, ofCrAnState φc']ₛca *
|
||||
ofCrAnList (createFilter φs') * ofCrAnList (annihilateFilter (φs ++ φs'))) := by
|
||||
rw [superCommute_ofCrAnState_ofCrAnState, mul_sub, sub_mul, map_sub]
|
||||
rw [superCommuteF_ofCrAnState_ofCrAnState, mul_sub, sub_mul, map_sub]
|
||||
conv_lhs =>
|
||||
lhs; rhs
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, ← ofCrAnList_append, ← ofCrAnList_append,
|
||||
|
@ -384,7 +384,7 @@ lemma normalOrder_superCommute_ofCrAnList_create_create_ofCrAnList
|
|||
ofCrAnList_singleton]
|
||||
rw [ofCrAnList_append, ofCrAnList_singleton, ofCrAnList_singleton, smul_mul_assoc]
|
||||
|
||||
lemma normalOrder_superCommute_ofCrAnList_annihilate_annihilate_ofCrAnList
|
||||
lemma normalOrder_superCommuteF_ofCrAnList_annihilate_annihilate_ofCrAnList
|
||||
(φa φa' : 𝓕.CrAnStates)
|
||||
(hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
||||
(hφa' : 𝓕 |>ᶜ φa' = CreateAnnihilate.annihilate)
|
||||
|
@ -394,7 +394,7 @@ lemma normalOrder_superCommute_ofCrAnList_annihilate_annihilate_ofCrAnList
|
|||
(ofCrAnList (createFilter (φs ++ φs'))
|
||||
* ofCrAnList (annihilateFilter φs) * [ofCrAnState φa, ofCrAnState φa']ₛca
|
||||
* ofCrAnList (annihilateFilter φs')) := by
|
||||
rw [superCommute_ofCrAnState_ofCrAnState, mul_sub, sub_mul, map_sub]
|
||||
rw [superCommuteF_ofCrAnState_ofCrAnState, mul_sub, sub_mul, map_sub]
|
||||
conv_lhs =>
|
||||
lhs; rhs
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, ← ofCrAnList_append, ← ofCrAnList_append,
|
||||
|
@ -458,14 +458,14 @@ lemma normalOrder_superCommute_ofCrAnList_annihilate_annihilate_ofCrAnList
|
|||
|
||||
-/
|
||||
|
||||
lemma ofCrAnList_superCommute_normalOrder_ofCrAnList (φs φs' : List 𝓕.CrAnStates) :
|
||||
lemma ofCrAnList_superCommuteF_normalOrder_ofCrAnList (φs φs' : List 𝓕.CrAnStates) :
|
||||
[ofCrAnList φs, 𝓝ᶠ(ofCrAnList φs')]ₛca =
|
||||
ofCrAnList φs * 𝓝ᶠ(ofCrAnList φs') -
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofCrAnList φs') * ofCrAnList φs := by
|
||||
simp [normalOrder_ofCrAnList, map_smul, superCommute_ofCrAnList_ofCrAnList, ofCrAnList_append,
|
||||
simp [normalOrder_ofCrAnList, map_smul, superCommuteF_ofCrAnList_ofCrAnList, ofCrAnList_append,
|
||||
smul_sub, smul_smul, mul_comm]
|
||||
|
||||
lemma ofCrAnList_superCommute_normalOrder_ofStateList (φs : List 𝓕.CrAnStates)
|
||||
lemma ofCrAnList_superCommuteF_normalOrder_ofStateList (φs : List 𝓕.CrAnStates)
|
||||
(φs' : List 𝓕.States) : [ofCrAnList φs, 𝓝ᶠ(ofStateList φs')]ₛca =
|
||||
ofCrAnList φs * 𝓝ᶠ(ofStateList φs') -
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofStateList φs') * ofCrAnList φs := by
|
||||
|
@ -473,7 +473,7 @@ lemma ofCrAnList_superCommute_normalOrder_ofStateList (φs : List 𝓕.CrAnState
|
|||
← Finset.sum_sub_distrib, map_sum]
|
||||
congr
|
||||
funext n
|
||||
rw [ofCrAnList_superCommute_normalOrder_ofCrAnList,
|
||||
rw [ofCrAnList_superCommuteF_normalOrder_ofCrAnList,
|
||||
CrAnSection.statistics_eq_state_statistics]
|
||||
|
||||
/-!
|
||||
|
@ -482,20 +482,20 @@ lemma ofCrAnList_superCommute_normalOrder_ofStateList (φs : List 𝓕.CrAnState
|
|||
|
||||
-/
|
||||
|
||||
lemma ofCrAnList_mul_normalOrder_ofStateList_eq_superCommute (φs : List 𝓕.CrAnStates)
|
||||
lemma ofCrAnList_mul_normalOrder_ofStateList_eq_superCommuteF (φs : List 𝓕.CrAnStates)
|
||||
(φs' : List 𝓕.States) :
|
||||
ofCrAnList φs * 𝓝ᶠ(ofStateList φs') =
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofStateList φs') * ofCrAnList φs
|
||||
+ [ofCrAnList φs, 𝓝ᶠ(ofStateList φs')]ₛca := by
|
||||
simp [ofCrAnList_superCommute_normalOrder_ofStateList]
|
||||
simp [ofCrAnList_superCommuteF_normalOrder_ofStateList]
|
||||
|
||||
lemma ofCrAnState_mul_normalOrder_ofStateList_eq_superCommute (φ : 𝓕.CrAnStates)
|
||||
lemma ofCrAnState_mul_normalOrder_ofStateList_eq_superCommuteF (φ : 𝓕.CrAnStates)
|
||||
(φs' : List 𝓕.States) : ofCrAnState φ * 𝓝ᶠ(ofStateList φs') =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofStateList φs') * ofCrAnState φ
|
||||
+ [ofCrAnState φ, 𝓝ᶠ(ofStateList φs')]ₛca := by
|
||||
simp [← ofCrAnList_singleton, ofCrAnList_mul_normalOrder_ofStateList_eq_superCommute]
|
||||
simp [← ofCrAnList_singleton, ofCrAnList_mul_normalOrder_ofStateList_eq_superCommuteF]
|
||||
|
||||
lemma anPart_mul_normalOrder_ofStateList_eq_superCommute (φ : 𝓕.States)
|
||||
lemma anPart_mul_normalOrder_ofStateList_eq_superCommuteF (φ : 𝓕.States)
|
||||
(φs' : List 𝓕.States) :
|
||||
anPart φ * 𝓝ᶠ(ofStateList φs') =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofStateList φs' * anPart φ)
|
||||
|
@ -503,8 +503,8 @@ lemma anPart_mul_normalOrder_ofStateList_eq_superCommute (φ : 𝓕.States)
|
|||
rw [normalOrder_mul_anPart]
|
||||
match φ with
|
||||
| .inAsymp φ => simp
|
||||
| .position φ => simp [ofCrAnState_mul_normalOrder_ofStateList_eq_superCommute, crAnStatistics]
|
||||
| .outAsymp φ => simp [ofCrAnState_mul_normalOrder_ofStateList_eq_superCommute, crAnStatistics]
|
||||
| .position φ => simp [ofCrAnState_mul_normalOrder_ofStateList_eq_superCommuteF, crAnStatistics]
|
||||
| .outAsymp φ => simp [ofCrAnState_mul_normalOrder_ofStateList_eq_superCommuteF, crAnStatistics]
|
||||
|
||||
end
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue