refactor: Rename superCommute for CrAnAlgebra

This commit is contained in:
jstoobysmith 2025-01-30 05:52:50 +00:00
parent 32aefb7eb7
commit 289050c829
13 changed files with 428 additions and 425 deletions

View file

@ -26,7 +26,7 @@ open FieldStatistic
/-- The super commutor on the creation and annihlation algebra. For two bosonic operators
or a bosonic and fermionic operator this corresponds to the usual commutator
whilst for two fermionic operators this corresponds to the anti-commutator. -/
noncomputable def superCommute : 𝓕.CrAnAlgebra →ₗ[] 𝓕.CrAnAlgebra →ₗ[] 𝓕.CrAnAlgebra :=
noncomputable def superCommuteF : 𝓕.CrAnAlgebra →ₗ[] 𝓕.CrAnAlgebra →ₗ[] 𝓕.CrAnAlgebra :=
Basis.constr ofCrAnListBasis fun φs =>
Basis.constr ofCrAnListBasis fun φs' =>
ofCrAnList (φs ++ φs') - 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofCrAnList (φs' ++ φs)
@ -34,7 +34,7 @@ noncomputable def superCommute : 𝓕.CrAnAlgebra →ₗ[] 𝓕.CrAnAlgebra
/-- The super commutor on the creation and annihlation algebra. For two bosonic operators
or a bosonic and fermionic operator this corresponds to the usual commutator
whilst for two fermionic operators this corresponds to the anti-commutator. -/
scoped[FieldSpecification.CrAnAlgebra] notation "[" φs "," φs' "]ₛca" => superCommute φs φs'
scoped[FieldSpecification.CrAnAlgebra] notation "[" φs "," φs' "]ₛca" => superCommuteF φs φs'
/-!
@ -42,35 +42,35 @@ scoped[FieldSpecification.CrAnAlgebra] notation "[" φs "," φs' "]ₛca" => sup
-/
lemma superCommute_ofCrAnList_ofCrAnList (φs φs' : List 𝓕.CrAnStates) :
lemma superCommuteF_ofCrAnList_ofCrAnList (φs φs' : List 𝓕.CrAnStates) :
[ofCrAnList φs, ofCrAnList φs']ₛca =
ofCrAnList (φs ++ φs') - 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofCrAnList (φs' ++ φs) := by
rw [← ofListBasis_eq_ofList, ← ofListBasis_eq_ofList]
simp only [superCommute, Basis.constr_basis]
simp only [superCommuteF, Basis.constr_basis]
lemma superCommute_ofCrAnState_ofCrAnState (φ φ' : 𝓕.CrAnStates) :
lemma superCommuteF_ofCrAnState_ofCrAnState (φ φ' : 𝓕.CrAnStates) :
[ofCrAnState φ, ofCrAnState φ']ₛca =
ofCrAnState φ * ofCrAnState φ' - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofCrAnState φ' * ofCrAnState φ := by
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton]
rw [superCommute_ofCrAnList_ofCrAnList, ofCrAnList_append]
rw [superCommuteF_ofCrAnList_ofCrAnList, ofCrAnList_append]
congr
rw [ofCrAnList_append]
rw [FieldStatistic.ofList_singleton, FieldStatistic.ofList_singleton, smul_mul_assoc]
lemma superCommute_ofCrAnList_ofStatesList (φcas : List 𝓕.CrAnStates) (φs : List 𝓕.States) :
lemma superCommuteF_ofCrAnList_ofStatesList (φcas : List 𝓕.CrAnStates) (φs : List 𝓕.States) :
[ofCrAnList φcas, ofStateList φs]ₛca = ofCrAnList φcas * ofStateList φs -
𝓢(𝓕 |>ₛ φcas, 𝓕 |>ₛ φs) • ofStateList φs * ofCrAnList φcas := by
conv_lhs => rw [ofStateList_sum]
rw [map_sum]
conv_lhs =>
enter [2, x]
rw [superCommute_ofCrAnList_ofCrAnList, CrAnSection.statistics_eq_state_statistics,
rw [superCommuteF_ofCrAnList_ofCrAnList, CrAnSection.statistics_eq_state_statistics,
ofCrAnList_append, ofCrAnList_append]
rw [Finset.sum_sub_distrib, ← Finset.mul_sum, ← Finset.smul_sum,
← Finset.sum_mul, ← ofStateList_sum]
simp
lemma superCommute_ofStateList_ofStatesList (φ : List 𝓕.States) (φs : List 𝓕.States) :
lemma superCommuteF_ofStateList_ofStatesList (φ : List 𝓕.States) (φs : List 𝓕.States) :
[ofStateList φ, ofStateList φs]ₛca = ofStateList φ * ofStateList φs -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofStateList φs * ofStateList φ := by
conv_lhs => rw [ofStateList_sum]
@ -78,24 +78,24 @@ lemma superCommute_ofStateList_ofStatesList (φ : List 𝓕.States) (φs : List
Algebra.smul_mul_assoc]
conv_lhs =>
enter [2, x]
rw [superCommute_ofCrAnList_ofStatesList]
rw [superCommuteF_ofCrAnList_ofStatesList]
simp only [instCommGroup.eq_1, CrAnSection.statistics_eq_state_statistics,
Algebra.smul_mul_assoc, Finset.sum_sub_distrib]
rw [← Finset.sum_mul, ← Finset.smul_sum, ← Finset.mul_sum, ← ofStateList_sum]
lemma superCommute_ofState_ofStatesList (φ : 𝓕.States) (φs : List 𝓕.States) :
lemma superCommuteF_ofState_ofStatesList (φ : 𝓕.States) (φs : List 𝓕.States) :
[ofState φ, ofStateList φs]ₛca = ofState φ * ofStateList φs -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofStateList φs * ofState φ := by
rw [← ofStateList_singleton, superCommute_ofStateList_ofStatesList, ofStateList_singleton]
rw [← ofStateList_singleton, superCommuteF_ofStateList_ofStatesList, ofStateList_singleton]
simp
lemma superCommute_ofStateList_ofState (φs : List 𝓕.States) (φ : 𝓕.States) :
lemma superCommuteF_ofStateList_ofState (φs : List 𝓕.States) (φ : 𝓕.States) :
[ofStateList φs, ofState φ]ₛca = ofStateList φs * ofState φ -
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofState φ * ofStateList φs := by
rw [← ofStateList_singleton, superCommute_ofStateList_ofStatesList, ofStateList_singleton]
rw [← ofStateList_singleton, superCommuteF_ofStateList_ofStatesList, ofStateList_singleton]
simp
lemma superCommute_anPart_crPart (φ φ' : 𝓕.States) :
lemma superCommuteF_anPart_crPart (φ φ' : 𝓕.States) :
[anPart φ, crPart φ']ₛca =
anPart φ * crPart φ' -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • crPart φ' * anPart φ := by
@ -107,24 +107,24 @@ lemma superCommute_anPart_crPart (φ φ' : 𝓕.States) :
sub_self]
| States.position φ, States.position φ' =>
simp only [anPart_position, crPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
| States.outAsymp φ, States.position φ' =>
simp only [anPart_posAsymp, crPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
| States.position φ, States.inAsymp φ' =>
simp only [anPart_position, crPart_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
simp only [List.singleton_append, instCommGroup.eq_1, crAnStatistics,
FieldStatistic.ofList_singleton, Function.comp_apply, crAnStatesToStates_prod, ←
ofCrAnList_append]
| States.outAsymp φ, States.inAsymp φ' =>
simp only [anPart_posAsymp, crPart_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
lemma superCommute_crPart_anPart (φ φ' : 𝓕.States) :
lemma superCommuteF_crPart_anPart (φ φ' : 𝓕.States) :
[crPart φ, anPart φ']ₛca =
crPart φ * anPart φ' -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
@ -138,22 +138,22 @@ lemma superCommute_crPart_anPart (φ φ' : 𝓕.States) :
sub_self]
| States.position φ, States.position φ' =>
simp only [crPart_position, anPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
| States.position φ, States.outAsymp φ' =>
simp only [crPart_position, anPart_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
| States.inAsymp φ, States.position φ' =>
simp only [crPart_negAsymp, anPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
| States.inAsymp φ, States.outAsymp φ' =>
simp only [crPart_negAsymp, anPart_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
lemma superCommute_crPart_crPart (φ φ' : 𝓕.States) :
lemma superCommuteF_crPart_crPart (φ φ' : 𝓕.States) :
[crPart φ, crPart φ']ₛca =
crPart φ * crPart φ' -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
@ -166,22 +166,22 @@ lemma superCommute_crPart_crPart (φ φ' : 𝓕.States) :
simp only [crPart_posAsymp, map_zero, mul_zero, instCommGroup.eq_1, smul_zero, zero_mul, sub_self]
| States.position φ, States.position φ' =>
simp only [crPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
| States.position φ, States.inAsymp φ' =>
simp only [crPart_position, crPart_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
| States.inAsymp φ, States.position φ' =>
simp only [crPart_negAsymp, crPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
| States.inAsymp φ, States.inAsymp φ' =>
simp only [crPart_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
lemma superCommute_anPart_anPart (φ φ' : 𝓕.States) :
lemma superCommuteF_anPart_anPart (φ φ' : 𝓕.States) :
[anPart φ, anPart φ']ₛca =
anPart φ * anPart φ' -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
@ -193,38 +193,38 @@ lemma superCommute_anPart_anPart (φ φ' : 𝓕.States) :
simp
| States.position φ, States.position φ' =>
simp only [anPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
| States.position φ, States.outAsymp φ' =>
simp only [anPart_position, anPart_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
| States.outAsymp φ, States.position φ' =>
simp only [anPart_posAsymp, anPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
| States.outAsymp φ, States.outAsymp φ' =>
simp only [anPart_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
lemma superCommute_crPart_ofStateList (φ : 𝓕.States) (φs : List 𝓕.States) :
lemma superCommuteF_crPart_ofStateList (φ : 𝓕.States) (φs : List 𝓕.States) :
[crPart φ, ofStateList φs]ₛca =
crPart φ * ofStateList φs - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofStateList φs *
crPart φ := by
match φ with
| States.inAsymp φ =>
simp only [crPart_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofStatesList]
rw [← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofStatesList]
simp [crAnStatistics]
| States.position φ =>
simp only [crPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofStatesList]
rw [← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofStatesList]
simp [crAnStatistics]
| States.outAsymp φ =>
simp
lemma superCommute_anPart_ofStateList (φ : 𝓕.States) (φs : List 𝓕.States) :
lemma superCommuteF_anPart_ofStateList (φ : 𝓕.States) (φs : List 𝓕.States) :
[anPart φ, ofStateList φs]ₛca =
anPart φ * ofStateList φs - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) •
ofStateList φs * anPart φ := by
@ -233,97 +233,97 @@ lemma superCommute_anPart_ofStateList (φ : 𝓕.States) (φs : List 𝓕.States
simp
| States.position φ =>
simp only [anPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofStatesList]
rw [← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofStatesList]
simp [crAnStatistics]
| States.outAsymp φ =>
simp only [anPart_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofStatesList]
rw [← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofStatesList]
simp [crAnStatistics]
lemma superCommute_crPart_ofState (φ φ' : 𝓕.States) :
lemma superCommuteF_crPart_ofState (φ φ' : 𝓕.States) :
[crPart φ, ofState φ']ₛca =
crPart φ * ofState φ' -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofState φ' * crPart φ := by
rw [← ofStateList_singleton, superCommute_crPart_ofStateList]
rw [← ofStateList_singleton, superCommuteF_crPart_ofStateList]
simp
lemma superCommute_anPart_ofState (φ φ' : 𝓕.States) :
lemma superCommuteF_anPart_ofState (φ φ' : 𝓕.States) :
[anPart φ, ofState φ']ₛca =
anPart φ * ofState φ' -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofState φ' * anPart φ := by
rw [← ofStateList_singleton, superCommute_anPart_ofStateList]
rw [← ofStateList_singleton, superCommuteF_anPart_ofStateList]
simp
/-!
## Mul equal superCommute
## Mul equal superCommuteF
Lemmas which rewrite a multiplication of two elements of the algebra as their commuted
multiplication with a sign plus the super commutor.
-/
lemma ofCrAnList_mul_ofCrAnList_eq_superCommute (φs φs' : List 𝓕.CrAnStates) :
lemma ofCrAnList_mul_ofCrAnList_eq_superCommuteF (φs φs' : List 𝓕.CrAnStates) :
ofCrAnList φs * ofCrAnList φs' = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofCrAnList φs' * ofCrAnList φs
+ [ofCrAnList φs, ofCrAnList φs']ₛca := by
rw [superCommute_ofCrAnList_ofCrAnList]
rw [superCommuteF_ofCrAnList_ofCrAnList]
simp [ofCrAnList_append]
lemma ofCrAnState_mul_ofCrAnList_eq_superCommute (φ : 𝓕.CrAnStates) (φs' : List 𝓕.CrAnStates) :
lemma ofCrAnState_mul_ofCrAnList_eq_superCommuteF (φ : 𝓕.CrAnStates) (φs' : List 𝓕.CrAnStates) :
ofCrAnState φ * ofCrAnList φs' = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • ofCrAnList φs' * ofCrAnState φ
+ [ofCrAnState φ, ofCrAnList φs']ₛca := by
rw [← ofCrAnList_singleton, ofCrAnList_mul_ofCrAnList_eq_superCommute]
rw [← ofCrAnList_singleton, ofCrAnList_mul_ofCrAnList_eq_superCommuteF]
simp
lemma ofStateList_mul_ofStateList_eq_superCommute (φs φs' : List 𝓕.States) :
lemma ofStateList_mul_ofStateList_eq_superCommuteF (φs φs' : List 𝓕.States) :
ofStateList φs * ofStateList φs' = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofStateList φs' * ofStateList φs
+ [ofStateList φs, ofStateList φs']ₛca := by
rw [superCommute_ofStateList_ofStatesList]
rw [superCommuteF_ofStateList_ofStatesList]
simp
lemma ofState_mul_ofStateList_eq_superCommute (φ : 𝓕.States) (φs' : List 𝓕.States) :
lemma ofState_mul_ofStateList_eq_superCommuteF (φ : 𝓕.States) (φs' : List 𝓕.States) :
ofState φ * ofStateList φs' = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • ofStateList φs' * ofState φ
+ [ofState φ, ofStateList φs']ₛca := by
rw [superCommute_ofState_ofStatesList]
rw [superCommuteF_ofState_ofStatesList]
simp
lemma ofStateList_mul_ofState_eq_superCommute (φs : List 𝓕.States) (φ : 𝓕.States) :
lemma ofStateList_mul_ofState_eq_superCommuteF (φs : List 𝓕.States) (φ : 𝓕.States) :
ofStateList φs * ofState φ = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofState φ * ofStateList φs
+ [ofStateList φs, ofState φ]ₛca := by
rw [superCommute_ofStateList_ofState]
rw [superCommuteF_ofStateList_ofState]
simp
lemma crPart_mul_anPart_eq_superCommute (φ φ' : 𝓕.States) :
lemma crPart_mul_anPart_eq_superCommuteF (φ φ' : 𝓕.States) :
crPart φ * anPart φ' =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • anPart φ' * crPart φ +
[crPart φ, anPart φ']ₛca := by
rw [superCommute_crPart_anPart]
rw [superCommuteF_crPart_anPart]
simp
lemma anPart_mul_crPart_eq_superCommute (φ φ' : 𝓕.States) :
lemma anPart_mul_crPart_eq_superCommuteF (φ φ' : 𝓕.States) :
anPart φ * crPart φ' =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
crPart φ' * anPart φ +
[anPart φ, crPart φ']ₛca := by
rw [superCommute_anPart_crPart]
rw [superCommuteF_anPart_crPart]
simp
lemma crPart_mul_crPart_eq_superCommute (φ φ' : 𝓕.States) :
lemma crPart_mul_crPart_eq_superCommuteF (φ φ' : 𝓕.States) :
crPart φ * crPart φ' =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • crPart φ' * crPart φ +
[crPart φ, crPart φ']ₛca := by
rw [superCommute_crPart_crPart]
rw [superCommuteF_crPart_crPart]
simp
lemma anPart_mul_anPart_eq_superCommute (φ φ' : 𝓕.States) :
lemma anPart_mul_anPart_eq_superCommuteF (φ φ' : 𝓕.States) :
anPart φ * anPart φ' = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • anPart φ' * anPart φ +
[anPart φ, anPart φ']ₛca := by
rw [superCommute_anPart_anPart]
rw [superCommuteF_anPart_anPart]
simp
lemma ofCrAnList_mul_ofStateList_eq_superCommute (φs : List 𝓕.CrAnStates) (φs' : List 𝓕.States) :
lemma ofCrAnList_mul_ofStateList_eq_superCommuteF (φs : List 𝓕.CrAnStates) (φs' : List 𝓕.States) :
ofCrAnList φs * ofStateList φs' = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofStateList φs' * ofCrAnList φs
+ [ofCrAnList φs, ofStateList φs']ₛca := by
rw [superCommute_ofCrAnList_ofStatesList]
rw [superCommuteF_ofCrAnList_ofStatesList]
simp
/-!
@ -332,10 +332,10 @@ lemma ofCrAnList_mul_ofStateList_eq_superCommute (φs : List 𝓕.CrAnStates) (
-/
lemma superCommute_ofCrAnList_ofCrAnList_symm (φs φs' : List 𝓕.CrAnStates) :
lemma superCommuteF_ofCrAnList_ofCrAnList_symm (φs φs' : List 𝓕.CrAnStates) :
[ofCrAnList φs, ofCrAnList φs']ₛca =
(- 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs')) • [ofCrAnList φs', ofCrAnList φs]ₛca := by
rw [superCommute_ofCrAnList_ofCrAnList, superCommute_ofCrAnList_ofCrAnList, smul_sub]
rw [superCommuteF_ofCrAnList_ofCrAnList, superCommuteF_ofCrAnList_ofCrAnList, smul_sub]
simp only [instCommGroup.eq_1, neg_smul, sub_neg_eq_add]
rw [smul_smul]
conv_rhs =>
@ -344,10 +344,10 @@ lemma superCommute_ofCrAnList_ofCrAnList_symm (φs φs' : List 𝓕.CrAnStates)
simp only [one_smul]
abel
lemma superCommute_ofCrAnState_ofCrAnState_symm (φ φ' : 𝓕.CrAnStates) :
lemma superCommuteF_ofCrAnState_ofCrAnState_symm (φ φ' : 𝓕.CrAnStates) :
[ofCrAnState φ, ofCrAnState φ']ₛca =
(- 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ')) • [ofCrAnState φ', ofCrAnState φ]ₛca := by
rw [superCommute_ofCrAnState_ofCrAnState, superCommute_ofCrAnState_ofCrAnState]
rw [superCommuteF_ofCrAnState_ofCrAnState, superCommuteF_ofCrAnState_ofCrAnState]
rw [smul_sub]
simp only [instCommGroup.eq_1, Algebra.smul_mul_assoc, neg_smul, sub_neg_eq_add]
rw [smul_smul]
@ -362,41 +362,41 @@ lemma superCommute_ofCrAnState_ofCrAnState_symm (φ φ' : 𝓕.CrAnStates) :
## Splitting the super commutor on lists into sums.
-/
lemma superCommute_ofCrAnList_ofCrAnList_cons (φ : 𝓕.CrAnStates) (φs φs' : List 𝓕.CrAnStates) :
lemma superCommuteF_ofCrAnList_ofCrAnList_cons (φ : 𝓕.CrAnStates) (φs φs' : List 𝓕.CrAnStates) :
[ofCrAnList φs, ofCrAnList (φ :: φs')]ₛca =
[ofCrAnList φs, ofCrAnState φ]ₛca * ofCrAnList φs' +
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ)
• ofCrAnState φ * [ofCrAnList φs, ofCrAnList φs']ₛca := by
rw [superCommute_ofCrAnList_ofCrAnList]
rw [superCommuteF_ofCrAnList_ofCrAnList]
conv_rhs =>
lhs
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList, sub_mul, ← ofCrAnList_append]
rw [← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList, sub_mul, ← ofCrAnList_append]
rhs
rw [FieldStatistic.ofList_singleton, ofCrAnList_append, ofCrAnList_singleton, smul_mul_assoc,
mul_assoc, ← ofCrAnList_append]
conv_rhs =>
rhs
rw [superCommute_ofCrAnList_ofCrAnList, mul_sub, smul_mul_assoc]
rw [superCommuteF_ofCrAnList_ofCrAnList, mul_sub, smul_mul_assoc]
simp only [instCommGroup.eq_1, List.cons_append, List.append_assoc, List.nil_append,
Algebra.mul_smul_comm, Algebra.smul_mul_assoc, sub_add_sub_cancel, sub_right_inj]
rw [← ofCrAnList_cons, smul_smul, FieldStatistic.ofList_cons_eq_mul]
simp only [instCommGroup, map_mul, mul_comm]
lemma superCommute_ofCrAnList_ofStateList_cons (φ : 𝓕.States) (φs : List 𝓕.CrAnStates)
lemma superCommuteF_ofCrAnList_ofStateList_cons (φ : 𝓕.States) (φs : List 𝓕.CrAnStates)
(φs' : List 𝓕.States) : [ofCrAnList φs, ofStateList (φ :: φs')]ₛca =
[ofCrAnList φs, ofState φ]ₛca * ofStateList φs' +
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofState φ * [ofCrAnList φs, ofStateList φs']ₛca := by
rw [superCommute_ofCrAnList_ofStatesList]
rw [superCommuteF_ofCrAnList_ofStatesList]
conv_rhs =>
lhs
rw [← ofStateList_singleton, superCommute_ofCrAnList_ofStatesList, sub_mul, mul_assoc,
rw [← ofStateList_singleton, superCommuteF_ofCrAnList_ofStatesList, sub_mul, mul_assoc,
← ofStateList_append]
rhs
rw [FieldStatistic.ofList_singleton, ofStateList_singleton, smul_mul_assoc,
smul_mul_assoc, mul_assoc]
conv_rhs =>
rhs
rw [superCommute_ofCrAnList_ofStatesList, mul_sub, smul_mul_assoc]
rw [superCommuteF_ofCrAnList_ofStatesList, mul_sub, smul_mul_assoc]
simp only [instCommGroup, Algebra.smul_mul_assoc, List.singleton_append, Algebra.mul_smul_comm,
sub_add_sub_cancel, sub_right_inj]
rw [ofStateList_cons, mul_assoc, smul_smul, FieldStatistic.ofList_cons_eq_mul]
@ -407,33 +407,33 @@ Within the creation and annihilation algebra, we have that
`[φᶜᵃs, φᶜᵃ₀ … φᶜᵃₙ]ₛca = ∑ i, sᵢ • φᶜᵃs₀ … φᶜᵃᵢ₋₁ * [φᶜᵃs, φᶜᵃᵢ]ₛca * φᶜᵃᵢ₊₁ … φᶜᵃₙ`
where `sᵢ` is the exchange sign for `φᶜᵃs` and `φᶜᵃs₀ … φᶜᵃᵢ₋₁`.
-/
lemma superCommute_ofCrAnList_ofCrAnList_eq_sum (φs : List 𝓕.CrAnStates) :
lemma superCommuteF_ofCrAnList_ofCrAnList_eq_sum (φs : List 𝓕.CrAnStates) :
(φs' : List 𝓕.CrAnStates) → [ofCrAnList φs, ofCrAnList φs']ₛca =
∑ (n : Fin φs'.length), 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs'.take n) •
ofCrAnList (φs'.take n) * [ofCrAnList φs, ofCrAnState (φs'.get n)]ₛca *
ofCrAnList (φs'.drop (n + 1))
| [] => by
simp [← ofCrAnList_nil, superCommute_ofCrAnList_ofCrAnList]
simp [← ofCrAnList_nil, superCommuteF_ofCrAnList_ofCrAnList]
| φ :: φs' => by
rw [superCommute_ofCrAnList_ofCrAnList_cons, superCommute_ofCrAnList_ofCrAnList_eq_sum φs φs']
rw [superCommuteF_ofCrAnList_ofCrAnList_cons, superCommuteF_ofCrAnList_ofCrAnList_eq_sum φs φs']
conv_rhs => erw [Fin.sum_univ_succ]
congr 1
· simp
· simp [Finset.mul_sum, smul_smul, ofCrAnList_cons, mul_assoc,
FieldStatistic.ofList_cons_eq_mul, mul_comm]
lemma superCommute_ofCrAnList_ofStateList_eq_sum (φs : List 𝓕.CrAnStates) : (φs' : List 𝓕.States) →
lemma superCommuteF_ofCrAnList_ofStateList_eq_sum (φs : List 𝓕.CrAnStates) : (φs' : List 𝓕.States) →
[ofCrAnList φs, ofStateList φs']ₛca =
∑ (n : Fin φs'.length), 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs'.take n) •
ofStateList (φs'.take n) * [ofCrAnList φs, ofState (φs'.get n)]ₛca *
ofStateList (φs'.drop (n + 1))
| [] => by
simp only [superCommute_ofCrAnList_ofStatesList, instCommGroup, ofList_empty,
simp only [superCommuteF_ofCrAnList_ofStatesList, instCommGroup, ofList_empty,
exchangeSign_bosonic, one_smul, List.length_nil, Finset.univ_eq_empty, List.take_nil,
List.get_eq_getElem, List.drop_nil, Finset.sum_empty]
simp
| φ :: φs' => by
rw [superCommute_ofCrAnList_ofStateList_cons, superCommute_ofCrAnList_ofStateList_eq_sum φs φs']
rw [superCommuteF_ofCrAnList_ofStateList_cons, superCommuteF_ofCrAnList_ofStateList_eq_sum φs φs']
conv_rhs => erw [Fin.sum_univ_succ]
congr 1
· simp
@ -445,9 +445,9 @@ lemma summerCommute_jacobi_ofCrAnList (φs1 φs2 φs3 : List 𝓕.CrAnStates) :
𝓢(𝓕 |>ₛ φs1, 𝓕 |>ₛ φs3) •
(- 𝓢(𝓕 |>ₛ φs2, 𝓕 |>ₛ φs3) • [ofCrAnList φs3, [ofCrAnList φs1, ofCrAnList φs2]ₛca]ₛca -
𝓢(𝓕 |>ₛ φs1, 𝓕 |>ₛ φs2) • [ofCrAnList φs2, [ofCrAnList φs3, ofCrAnList φs1]ₛca]ₛca) := by
repeat rw [superCommute_ofCrAnList_ofCrAnList]
repeat rw [superCommuteF_ofCrAnList_ofCrAnList]
simp only [instCommGroup, map_sub, map_smul, neg_smul]
repeat rw [superCommute_ofCrAnList_ofCrAnList]
repeat rw [superCommuteF_ofCrAnList_ofCrAnList]
simp only [instCommGroup.eq_1, ofList_append_eq_mul, List.append_assoc]
by_cases h1 : (𝓕 |>ₛ φs1) = bosonic <;>
by_cases h2 : (𝓕 |>ₛ φs2) = bosonic <;>
@ -489,7 +489,7 @@ lemma summerCommute_jacobi_ofCrAnList (φs1 φs2 φs3 : List 𝓕.CrAnStates) :
-/
lemma superCommute_grade {a b : 𝓕.CrAnAlgebra} {f1 f2 : FieldStatistic}
lemma superCommuteF_grade {a b : 𝓕.CrAnAlgebra} {f1 f2 : FieldStatistic}
(ha : a ∈ statisticSubmodule f1) (hb : b ∈ statisticSubmodule f2) :
[a, b]ₛca ∈ statisticSubmodule (f1 + f2) := by
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule f2) : Prop :=
@ -506,7 +506,7 @@ lemma superCommute_grade {a b : 𝓕.CrAnAlgebra} {f1 f2 : FieldStatistic}
· intro x hx
obtain ⟨φs', rfl, hφs'⟩ := hx
simp only [add_eq_mul, instCommGroup, p]
rw [superCommute_ofCrAnList_ofCrAnList]
rw [superCommuteF_ofCrAnList_ofCrAnList]
apply Submodule.sub_mem _
· apply ofCrAnList_mem_statisticSubmodule_of
rw [ofList_append_eq_mul, hφs, hφs']
@ -531,7 +531,7 @@ lemma superCommute_grade {a b : 𝓕.CrAnAlgebra} {f1 f2 : FieldStatistic}
exact Submodule.smul_mem _ c hp1
· exact hb
lemma superCommute_bosonic_bosonic {a b : 𝓕.CrAnAlgebra}
lemma superCommuteF_bosonic_bosonic {a b : 𝓕.CrAnAlgebra}
(ha : a ∈ statisticSubmodule bosonic) (hb : b ∈ statisticSubmodule bosonic) :
[a, b]ₛca = a * b - b * a := by
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule bosonic) : Prop :=
@ -547,7 +547,7 @@ lemma superCommute_bosonic_bosonic {a b : 𝓕.CrAnAlgebra}
· intro x hx
obtain ⟨φs', rfl, hφs'⟩ := hx
simp only [p]
rw [superCommute_ofCrAnList_ofCrAnList]
rw [superCommuteF_ofCrAnList_ofCrAnList]
simp [hφs, ofCrAnList_append]
· simp [p]
· intro x y hx hy hp1 hp2
@ -564,7 +564,7 @@ lemma superCommute_bosonic_bosonic {a b : 𝓕.CrAnAlgebra}
simp_all [p, smul_sub]
· exact hb
lemma superCommute_bosonic_fermionic {a b : 𝓕.CrAnAlgebra}
lemma superCommuteF_bosonic_fermionic {a b : 𝓕.CrAnAlgebra}
(ha : a ∈ statisticSubmodule bosonic) (hb : b ∈ statisticSubmodule fermionic) :
[a, b]ₛca = a * b - b * a := by
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule fermionic) : Prop :=
@ -580,7 +580,7 @@ lemma superCommute_bosonic_fermionic {a b : 𝓕.CrAnAlgebra}
· intro x hx
obtain ⟨φs', rfl, hφs'⟩ := hx
simp only [p]
rw [superCommute_ofCrAnList_ofCrAnList]
rw [superCommuteF_ofCrAnList_ofCrAnList]
simp [hφs, hφs', ofCrAnList_append]
· simp [p]
· intro x y hx hy hp1 hp2
@ -597,7 +597,7 @@ lemma superCommute_bosonic_fermionic {a b : 𝓕.CrAnAlgebra}
simp_all [p, smul_sub]
· exact hb
lemma superCommute_fermionic_bonsonic {a b : 𝓕.CrAnAlgebra}
lemma superCommuteF_fermionic_bonsonic {a b : 𝓕.CrAnAlgebra}
(ha : a ∈ statisticSubmodule fermionic) (hb : b ∈ statisticSubmodule bosonic) :
[a, b]ₛca = a * b - b * a := by
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule bosonic) : Prop :=
@ -613,7 +613,7 @@ lemma superCommute_fermionic_bonsonic {a b : 𝓕.CrAnAlgebra}
· intro x hx
obtain ⟨φs', rfl, hφs'⟩ := hx
simp only [p]
rw [superCommute_ofCrAnList_ofCrAnList]
rw [superCommuteF_ofCrAnList_ofCrAnList]
simp [hφs, hφs', ofCrAnList_append]
· simp [p]
· intro x y hx hy hp1 hp2
@ -630,33 +630,33 @@ lemma superCommute_fermionic_bonsonic {a b : 𝓕.CrAnAlgebra}
simp_all [p, smul_sub]
· exact hb
lemma superCommute_bonsonic {a b : 𝓕.CrAnAlgebra} (hb : b ∈ statisticSubmodule bosonic) :
lemma superCommuteF_bonsonic {a b : 𝓕.CrAnAlgebra} (hb : b ∈ statisticSubmodule bosonic) :
[a, b]ₛca = a * b - b * a := by
rw [← bosonicProj_add_fermionicProj a]
simp only [map_add, LinearMap.add_apply]
rw [superCommute_bosonic_bosonic (by simp) hb, superCommute_fermionic_bonsonic (by simp) hb]
rw [superCommuteF_bosonic_bosonic (by simp) hb, superCommuteF_fermionic_bonsonic (by simp) hb]
simp only [add_mul, mul_add]
abel
lemma bosonic_superCommute {a b : 𝓕.CrAnAlgebra} (ha : a ∈ statisticSubmodule bosonic) :
lemma bosonic_superCommuteF {a b : 𝓕.CrAnAlgebra} (ha : a ∈ statisticSubmodule bosonic) :
[a, b]ₛca = a * b - b * a := by
rw [← bosonicProj_add_fermionicProj b]
simp only [map_add, LinearMap.add_apply]
rw [superCommute_bosonic_bosonic ha (by simp), superCommute_bosonic_fermionic ha (by simp)]
rw [superCommuteF_bosonic_bosonic ha (by simp), superCommuteF_bosonic_fermionic ha (by simp)]
simp only [add_mul, mul_add]
abel
lemma superCommute_bonsonic_symm {a b : 𝓕.CrAnAlgebra} (hb : b ∈ statisticSubmodule bosonic) :
lemma superCommuteF_bonsonic_symm {a b : 𝓕.CrAnAlgebra} (hb : b ∈ statisticSubmodule bosonic) :
[a, b]ₛca = - [b, a]ₛca := by
rw [bosonic_superCommute hb, superCommute_bonsonic hb]
rw [bosonic_superCommuteF hb, superCommuteF_bonsonic hb]
simp
lemma bonsonic_superCommute_symm {a b : 𝓕.CrAnAlgebra} (ha : a ∈ statisticSubmodule bosonic) :
lemma bonsonic_superCommuteF_symm {a b : 𝓕.CrAnAlgebra} (ha : a ∈ statisticSubmodule bosonic) :
[a, b]ₛca = - [b, a]ₛca := by
rw [bosonic_superCommute ha, superCommute_bonsonic ha]
rw [bosonic_superCommuteF ha, superCommuteF_bonsonic ha]
simp
lemma superCommute_fermionic_fermionic {a b : 𝓕.CrAnAlgebra}
lemma superCommuteF_fermionic_fermionic {a b : 𝓕.CrAnAlgebra}
(ha : a ∈ statisticSubmodule fermionic) (hb : b ∈ statisticSubmodule fermionic) :
[a, b]ₛca = a * b + b * a := by
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule fermionic) : Prop :=
@ -672,7 +672,7 @@ lemma superCommute_fermionic_fermionic {a b : 𝓕.CrAnAlgebra}
· intro x hx
obtain ⟨φs', rfl, hφs'⟩ := hx
simp only [p]
rw [superCommute_ofCrAnList_ofCrAnList]
rw [superCommuteF_ofCrAnList_ofCrAnList]
simp [hφs, hφs', ofCrAnList_append]
· simp [p]
· intro x y hx hy hp1 hp2
@ -689,27 +689,27 @@ lemma superCommute_fermionic_fermionic {a b : 𝓕.CrAnAlgebra}
simp_all [p, smul_sub]
· exact hb
lemma superCommute_fermionic_fermionic_symm {a b : 𝓕.CrAnAlgebra}
lemma superCommuteF_fermionic_fermionic_symm {a b : 𝓕.CrAnAlgebra}
(ha : a ∈ statisticSubmodule fermionic) (hb : b ∈ statisticSubmodule fermionic) :
[a, b]ₛca = [b, a]ₛca := by
rw [superCommute_fermionic_fermionic ha hb]
rw [superCommute_fermionic_fermionic hb ha]
rw [superCommuteF_fermionic_fermionic ha hb]
rw [superCommuteF_fermionic_fermionic hb ha]
abel
lemma superCommute_expand_bosonicProj_fermionicProj (a b : 𝓕.CrAnAlgebra) :
lemma superCommuteF_expand_bosonicProj_fermionicProj (a b : 𝓕.CrAnAlgebra) :
[a, b]ₛca = bosonicProj a * bosonicProj b - bosonicProj b * bosonicProj a +
bosonicProj a * fermionicProj b - fermionicProj b * bosonicProj a +
fermionicProj a * bosonicProj b - bosonicProj b * fermionicProj a +
fermionicProj a * fermionicProj b + fermionicProj b * fermionicProj a := by
conv_lhs => rw [← bosonicProj_add_fermionicProj a, ← bosonicProj_add_fermionicProj b]
simp only [map_add, LinearMap.add_apply]
rw [superCommute_bonsonic (by simp),
superCommute_fermionic_bonsonic (by simp) (by simp),
superCommute_bosonic_fermionic (by simp) (by simp),
superCommute_fermionic_fermionic (by simp) (by simp)]
rw [superCommuteF_bonsonic (by simp),
superCommuteF_fermionic_bonsonic (by simp) (by simp),
superCommuteF_bosonic_fermionic (by simp) (by simp),
superCommuteF_fermionic_fermionic (by simp) (by simp)]
abel
lemma superCommute_ofCrAnList_ofCrAnList_bosonic_or_fermionic (φs φs' : List 𝓕.CrAnStates) :
lemma superCommuteF_ofCrAnList_ofCrAnList_bosonic_or_fermionic (φs φs' : List 𝓕.CrAnStates) :
[ofCrAnList φs, ofCrAnList φs']ₛca ∈ statisticSubmodule bosonic
[ofCrAnList φs, ofCrAnList φs']ₛca ∈ statisticSubmodule fermionic := by
by_cases h1 : (𝓕 |>ₛ φs) = bosonic <;> by_cases h2 : (𝓕 |>ₛ φs') = bosonic
@ -718,7 +718,7 @@ lemma superCommute_ofCrAnList_ofCrAnList_bosonic_or_fermionic (φs φs' : List
simp only [add_eq_mul, instCommGroup, mul_self]
rfl
rw [h]
apply superCommute_grade
apply superCommuteF_grade
apply ofCrAnList_mem_statisticSubmodule_of _ _ h1
apply ofCrAnList_mem_statisticSubmodule_of _ _ h2
· right
@ -726,7 +726,7 @@ lemma superCommute_ofCrAnList_ofCrAnList_bosonic_or_fermionic (φs φs' : List
simp only [add_eq_mul, instCommGroup, mul_self]
rfl
rw [h]
apply superCommute_grade
apply superCommuteF_grade
apply ofCrAnList_mem_statisticSubmodule_of _ _ h1
apply ofCrAnList_mem_statisticSubmodule_of _ _ (by simpa using h2)
· right
@ -734,7 +734,7 @@ lemma superCommute_ofCrAnList_ofCrAnList_bosonic_or_fermionic (φs φs' : List
simp only [add_eq_mul, instCommGroup, mul_self]
rfl
rw [h]
apply superCommute_grade
apply superCommuteF_grade
apply ofCrAnList_mem_statisticSubmodule_of _ _ (by simpa using h1)
apply ofCrAnList_mem_statisticSubmodule_of _ _ h2
· left
@ -742,47 +742,47 @@ lemma superCommute_ofCrAnList_ofCrAnList_bosonic_or_fermionic (φs φs' : List
simp only [add_eq_mul, instCommGroup, mul_self]
rfl
rw [h]
apply superCommute_grade
apply superCommuteF_grade
apply ofCrAnList_mem_statisticSubmodule_of _ _ (by simpa using h1)
apply ofCrAnList_mem_statisticSubmodule_of _ _ (by simpa using h2)
lemma superCommute_ofCrAnState_ofCrAnState_bosonic_or_fermionic (φ φ' : 𝓕.CrAnStates) :
lemma superCommuteF_ofCrAnState_ofCrAnState_bosonic_or_fermionic (φ φ' : 𝓕.CrAnStates) :
[ofCrAnState φ, ofCrAnState φ']ₛca ∈ statisticSubmodule bosonic
[ofCrAnState φ, ofCrAnState φ']ₛca ∈ statisticSubmodule fermionic := by
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton]
exact superCommute_ofCrAnList_ofCrAnList_bosonic_or_fermionic [φ] [φ']
exact superCommuteF_ofCrAnList_ofCrAnList_bosonic_or_fermionic [φ] [φ']
lemma superCommute_superCommute_ofCrAnState_bosonic_or_fermionic (φ1 φ2 φ3 : 𝓕.CrAnStates) :
lemma superCommuteF_superCommuteF_ofCrAnState_bosonic_or_fermionic (φ1 φ2 φ3 : 𝓕.CrAnStates) :
[ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca ∈ statisticSubmodule bosonic
[ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca ∈ statisticSubmodule fermionic := by
rcases superCommute_ofCrAnState_ofCrAnState_bosonic_or_fermionic φ2 φ3 with hs | hs
rcases superCommuteF_ofCrAnState_ofCrAnState_bosonic_or_fermionic φ2 φ3 with hs | hs
<;> rcases ofCrAnState_bosonic_or_fermionic φ1 with h1 | h1
· left
have h : bosonic = bosonic + bosonic := by
simp only [add_eq_mul, instCommGroup, mul_self]
rfl
rw [h]
apply superCommute_grade h1 hs
apply superCommuteF_grade h1 hs
· right
have h : fermionic = fermionic + bosonic := by
simp only [add_eq_mul, instCommGroup, mul_self]
rfl
rw [h]
apply superCommute_grade h1 hs
apply superCommuteF_grade h1 hs
· right
have h : fermionic = bosonic + fermionic := by
simp only [add_eq_mul, instCommGroup, mul_self]
rfl
rw [h]
apply superCommute_grade h1 hs
apply superCommuteF_grade h1 hs
· left
have h : bosonic = fermionic + fermionic := by
simp only [add_eq_mul, instCommGroup, mul_self]
rfl
rw [h]
apply superCommute_grade h1 hs
apply superCommuteF_grade h1 hs
lemma superCommute_bosonic_ofCrAnList_eq_sum (a : 𝓕.CrAnAlgebra) (φs : List 𝓕.CrAnStates)
lemma superCommuteF_bosonic_ofCrAnList_eq_sum (a : 𝓕.CrAnAlgebra) (φs : List 𝓕.CrAnStates)
(ha : a ∈ statisticSubmodule bosonic) :
[a, ofCrAnList φs]ₛca = ∑ (n : Fin φs.length),
ofCrAnList (φs.take n) * [a, ofCrAnState (φs.get n)]ₛca *
@ -796,7 +796,7 @@ lemma superCommute_bosonic_ofCrAnList_eq_sum (a : 𝓕.CrAnAlgebra) (φs : List
· intro a ha
obtain ⟨φs, rfl, hφs⟩ := ha
simp only [List.get_eq_getElem, p]
rw [superCommute_ofCrAnList_ofCrAnList_eq_sum]
rw [superCommuteF_ofCrAnList_ofCrAnList_eq_sum]
congr
funext n
simp [hφs]
@ -811,7 +811,7 @@ lemma superCommute_bosonic_ofCrAnList_eq_sum (a : 𝓕.CrAnAlgebra) (φs : List
simp_all [p, Finset.smul_sum]
· exact ha
lemma superCommute_fermionic_ofCrAnList_eq_sum (a : 𝓕.CrAnAlgebra) (φs : List 𝓕.CrAnStates)
lemma superCommuteF_fermionic_ofCrAnList_eq_sum (a : 𝓕.CrAnAlgebra) (φs : List 𝓕.CrAnStates)
(ha : a ∈ statisticSubmodule fermionic) :
[a, ofCrAnList φs]ₛca = ∑ (n : Fin φs.length), 𝓢(fermionic, 𝓕 |>ₛ φs.take n) •
ofCrAnList (φs.take n) * [a, ofCrAnState (φs.get n)]ₛca *
@ -825,7 +825,7 @@ lemma superCommute_fermionic_ofCrAnList_eq_sum (a : 𝓕.CrAnAlgebra) (φs : Lis
· intro a ha
obtain ⟨φs, rfl, hφs⟩ := ha
simp only [instCommGroup, List.get_eq_getElem, Algebra.smul_mul_assoc, p]
rw [superCommute_ofCrAnList_ofCrAnList_eq_sum]
rw [superCommuteF_ofCrAnList_ofCrAnList_eq_sum]
congr
funext n
simp [hφs]
@ -845,7 +845,7 @@ lemma superCommute_fermionic_ofCrAnList_eq_sum (a : 𝓕.CrAnAlgebra) (φs : Lis
simp [smul_smul, mul_comm]
· exact ha
lemma statistic_neq_of_superCommute_fermionic {φs φs' : List 𝓕.CrAnStates}
lemma statistic_neq_of_superCommuteF_fermionic {φs φs' : List 𝓕.CrAnStates}
(h : [ofCrAnList φs, ofCrAnList φs']ₛca ∈ statisticSubmodule fermionic) :
(𝓕 |>ₛ φs) ≠ (𝓕 |>ₛ φs') [ofCrAnList φs, ofCrAnList φs']ₛca = 0 := by
by_cases h0 : [ofCrAnList φs, ofCrAnList φs']ₛca = 0
@ -858,7 +858,7 @@ lemma statistic_neq_of_superCommute_fermionic {φs φs' : List 𝓕.CrAnStates}
simp only [add_eq_mul, instCommGroup, mul_self]
rfl
rw [h1]
apply superCommute_grade
apply superCommuteF_grade
apply ofCrAnList_mem_statisticSubmodule_of _ _ hc
apply ofCrAnList_mem_statisticSubmodule_of _ _
rw [← hn, hc]
@ -866,7 +866,7 @@ lemma statistic_neq_of_superCommute_fermionic {φs φs' : List 𝓕.CrAnStates}
simp only [add_eq_mul, instCommGroup, mul_self]
rfl
rw [h1]
apply superCommute_grade
apply superCommuteF_grade
apply ofCrAnList_mem_statisticSubmodule_of _ _
simpa using hc
apply ofCrAnList_mem_statisticSubmodule_of _ _