From 2894cfd0f801df563825c0f440ad148da984a877 Mon Sep 17 00:00:00 2001 From: jstoobysmith <72603918+jstoobysmith@users.noreply.github.com> Date: Tue, 22 Oct 2024 13:19:53 +0000 Subject: [PATCH] refactor: Lint --- .../Tree/NodeIdentities/ProdAssoc.lean | 22 +++++++++---------- 1 file changed, 11 insertions(+), 11 deletions(-) diff --git a/HepLean/Tensors/Tree/NodeIdentities/ProdAssoc.lean b/HepLean/Tensors/Tree/NodeIdentities/ProdAssoc.lean index 577091f..866c7a5 100644 --- a/HepLean/Tensors/Tree/NodeIdentities/ProdAssoc.lean +++ b/HepLean/Tensors/Tree/NodeIdentities/ProdAssoc.lean @@ -10,7 +10,6 @@ import HepLean.Tensors.Tree.Basic The results here follow from the properties of braided categories and braided functors. -/ - open IndexNotation open CategoryTheory open MonoidalCategory @@ -20,31 +19,32 @@ open HepLean.Fin namespace TensorTree variable {S : TensorSpecies} {n n2 n3 : ℕ} - (c : Fin n → S.C) (c2 : Fin n2 → S.C) (c3 : Fin n3 → S.C ) + (c : Fin n → S.C) (c2 : Fin n2 → S.C) (c3 : Fin n3 → S.C) /-- The permutation that arises from assocativity of `prod` node. This permutation is defined using braiding and composition with `finSumFinEquiv` based-isomorphisms. -/ -def assocPerm : OverColor.mk (Sum.elim (Sum.elim c c2 ∘ ⇑finSumFinEquiv.symm) c3 ∘ ⇑finSumFinEquiv.symm) ≅ +def assocPerm : OverColor.mk + (Sum.elim (Sum.elim c c2 ∘ ⇑finSumFinEquiv.symm) c3 ∘ ⇑finSumFinEquiv.symm) ≅ OverColor.mk (Sum.elim c (Sum.elim c2 c3 ∘ ⇑finSumFinEquiv.symm) ∘ ⇑finSumFinEquiv.symm) := (equivToIso finSumFinEquiv).symm.trans <| (whiskerRightIso (equivToIso finSumFinEquiv).symm (OverColor.mk c3)).trans <| - (α_ (OverColor.mk c) (OverColor.mk c2) (OverColor.mk c3)).trans <| - (whiskerLeftIso (OverColor.mk c) (equivToIso finSumFinEquiv)).trans <| - (equivToIso finSumFinEquiv) + (α_ (OverColor.mk c) (OverColor.mk c2) (OverColor.mk c3)).trans <| + (whiskerLeftIso (OverColor.mk c) (equivToIso finSumFinEquiv)).trans <| + equivToIso finSumFinEquiv lemma finSumFinEquiv_comp_assocPerm : (equivToIso finSumFinEquiv).hom ≫ (assocPerm c c2 c3).hom = (whiskerRightIso (equivToIso finSumFinEquiv).symm (OverColor.mk c3)).hom ≫ (α_ (OverColor.mk c) (OverColor.mk c2) (OverColor.mk c3)).hom ≫ - (whiskerLeftIso (OverColor.mk c) (equivToIso finSumFinEquiv)).hom + (whiskerLeftIso (OverColor.mk c) (equivToIso finSumFinEquiv)).hom ≫ (equivToIso finSumFinEquiv).hom := by rw [assocPerm] simp -/-- The `prod` obeys associativity. -/ +/-- The `prod` obeys associativity. -/ theorem prod_assoc (t : TensorTree S c) (t2 : TensorTree S c2) (t3 : TensorTree S c3) : - (prod t (prod t2 t3)).tensor = (perm (assocPerm c c2 c3).hom (prod (prod t t2) t3)).tensor := by + (prod t (prod t2 t3)).tensor = (perm (assocPerm c c2 c3).hom (prod (prod t t2) t3)).tensor := by rw [perm_tensor] nth_rewrite 2 [prod_tensor] change _ = ((S.F.map (equivToIso finSumFinEquiv).hom) ≫ S.F.map (assocPerm c c2 c3).hom).hom @@ -94,10 +94,10 @@ theorem prod_assoc (t : TensorTree S c) (t2 : TensorTree S c2) (t3 : TensorTree Action.FunctorCategoryEquivalence.functor_obj_obj, ModuleCat.coe_comp, Function.comp_apply, ModuleCat.MonoidalCategory.associator_hom_apply] rw [prod_tensor] - change ((_ ◁ (S.F.map (equivToIso finSumFinEquiv).hom) ) ≫ + change ((_ ◁ (S.F.map (equivToIso finSumFinEquiv).hom)) ≫ S.F.μ (OverColor.mk c) (OverColor.mk (Sum.elim c2 c3 ∘ ⇑finSumFinEquiv.symm))).hom (t.tensor ⊗ₜ[S.k] - ((S.F.μ (OverColor.mk c2) (OverColor.mk c3)).hom (t2.tensor ⊗ₜ[S.k] t3.tensor))) = _ + ((S.F.μ (OverColor.mk c2) (OverColor.mk c3)).hom (t2.tensor ⊗ₜ[S.k] t3.tensor))) = _ rw [S.F.μ_natural_right] simp only [Action.instMonoidalCategory_tensorObj_V, Action.comp_hom, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,