refactor: Lint

This commit is contained in:
jstoobysmith 2024-10-22 13:19:53 +00:00
parent ebf5fe5d0f
commit 2894cfd0f8

View file

@ -10,7 +10,6 @@ import HepLean.Tensors.Tree.Basic
The results here follow from the properties of braided categories and braided functors.
-/
open IndexNotation
open CategoryTheory
open MonoidalCategory
@ -20,31 +19,32 @@ open HepLean.Fin
namespace TensorTree
variable {S : TensorSpecies} {n n2 n3 : }
(c : Fin n → S.C) (c2 : Fin n2 → S.C) (c3 : Fin n3 → S.C )
(c : Fin n → S.C) (c2 : Fin n2 → S.C) (c3 : Fin n3 → S.C)
/-- The permutation that arises from assocativity of `prod` node.
This permutation is defined using braiding and composition with `finSumFinEquiv`
based-isomorphisms. -/
def assocPerm : OverColor.mk (Sum.elim (Sum.elim c c2 ∘ ⇑finSumFinEquiv.symm) c3 ∘ ⇑finSumFinEquiv.symm) ≅
def assocPerm : OverColor.mk
(Sum.elim (Sum.elim c c2 ∘ ⇑finSumFinEquiv.symm) c3 ∘ ⇑finSumFinEquiv.symm) ≅
OverColor.mk (Sum.elim c (Sum.elim c2 c3 ∘ ⇑finSumFinEquiv.symm) ∘ ⇑finSumFinEquiv.symm) :=
(equivToIso finSumFinEquiv).symm.trans <|
(whiskerRightIso (equivToIso finSumFinEquiv).symm (OverColor.mk c3)).trans <|
(α_ (OverColor.mk c) (OverColor.mk c2) (OverColor.mk c3)).trans <|
(whiskerLeftIso (OverColor.mk c) (equivToIso finSumFinEquiv)).trans <|
(equivToIso finSumFinEquiv)
(α_ (OverColor.mk c) (OverColor.mk c2) (OverColor.mk c3)).trans <|
(whiskerLeftIso (OverColor.mk c) (equivToIso finSumFinEquiv)).trans <|
equivToIso finSumFinEquiv
lemma finSumFinEquiv_comp_assocPerm :
(equivToIso finSumFinEquiv).hom ≫ (assocPerm c c2 c3).hom =
(whiskerRightIso (equivToIso finSumFinEquiv).symm (OverColor.mk c3)).hom ≫
(α_ (OverColor.mk c) (OverColor.mk c2) (OverColor.mk c3)).hom ≫
(whiskerLeftIso (OverColor.mk c) (equivToIso finSumFinEquiv)).hom
(whiskerLeftIso (OverColor.mk c) (equivToIso finSumFinEquiv)).hom
≫ (equivToIso finSumFinEquiv).hom := by
rw [assocPerm]
simp
/-- The `prod` obeys associativity. -/
/-- The `prod` obeys associativity. -/
theorem prod_assoc (t : TensorTree S c) (t2 : TensorTree S c2) (t3 : TensorTree S c3) :
(prod t (prod t2 t3)).tensor = (perm (assocPerm c c2 c3).hom (prod (prod t t2) t3)).tensor := by
(prod t (prod t2 t3)).tensor = (perm (assocPerm c c2 c3).hom (prod (prod t t2) t3)).tensor := by
rw [perm_tensor]
nth_rewrite 2 [prod_tensor]
change _ = ((S.F.map (equivToIso finSumFinEquiv).hom) ≫ S.F.map (assocPerm c c2 c3).hom).hom
@ -94,10 +94,10 @@ theorem prod_assoc (t : TensorTree S c) (t2 : TensorTree S c2) (t3 : TensorTree
Action.FunctorCategoryEquivalence.functor_obj_obj, ModuleCat.coe_comp, Function.comp_apply,
ModuleCat.MonoidalCategory.associator_hom_apply]
rw [prod_tensor]
change ((_ ◁ (S.F.map (equivToIso finSumFinEquiv).hom) ) ≫
change ((_ ◁ (S.F.map (equivToIso finSumFinEquiv).hom)) ≫
S.F.μ (OverColor.mk c) (OverColor.mk (Sum.elim c2 c3 ∘ ⇑finSumFinEquiv.symm))).hom
(t.tensor ⊗ₜ[S.k]
((S.F.μ (OverColor.mk c2) (OverColor.mk c3)).hom (t2.tensor ⊗ₜ[S.k] t3.tensor))) = _
((S.F.μ (OverColor.mk c2) (OverColor.mk c3)).hom (t2.tensor ⊗ₜ[S.k] t3.tensor))) = _
rw [S.F.μ_natural_right]
simp only [Action.instMonoidalCategory_tensorObj_V, Action.comp_hom, Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,