refactor: Lint
This commit is contained in:
parent
c820a90939
commit
2975e08f85
6 changed files with 10 additions and 15 deletions
|
@ -240,7 +240,7 @@ lemma finExtractOne_symm_inl_apply {n : ℕ} (i : Fin n.succ) :
|
|||
rfl
|
||||
|
||||
/-- Given an equivalence `Fin n.succ.succ ≃ Fin n.succ.succ`, and an `i : Fin n.succ.succ`,
|
||||
the map `Fin n.succ → Fin n.succ` obtained by dropping `i` and it's image. -/
|
||||
the map `Fin n.succ → Fin n.succ` obtained by dropping `i` and it's image. -/
|
||||
def finExtractOnPermHom (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fin n.succ.succ) :
|
||||
Fin n.succ → Fin n.succ := fun x => predAboveI (σ i) (σ ((finExtractOne i).symm (Sum.inr x)))
|
||||
|
||||
|
@ -269,7 +269,7 @@ lemma finExtractOnPermHom_inv (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fi
|
|||
omega
|
||||
|
||||
/-- Given an equivalence `Fin n.succ.succ ≃ Fin n.succ.succ`, and an `i : Fin n.succ.succ`,
|
||||
the equivalence `Fin n.succ ≃ Fin n.succ` obtained by dropping `i` and it's image. -/
|
||||
the equivalence `Fin n.succ ≃ Fin n.succ` obtained by dropping `i` and it's image. -/
|
||||
def finExtractOnePerm (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fin n.succ.succ) :
|
||||
Fin n.succ ≃ Fin n.succ where
|
||||
toFun x := finExtractOnPermHom i σ x
|
||||
|
|
|
@ -96,7 +96,7 @@ lemma symm_contract_antiSymm (A : (Lorentz.complexContr ⊗ Lorentz.complexContr
|
|||
rw [perm_contr]
|
||||
rw [perm_tensor_eq (contr_tensor_eq (contr_tensor_eq (prod_perm_right _ _ _ _)))]
|
||||
rw [perm_tensor_eq (contr_tensor_eq (perm_contr _ _))]
|
||||
rw [perm_tensor_eq (perm_contr _ _)]
|
||||
rw [perm_tensor_eq (perm_contr _ _)]
|
||||
rw [perm_perm]
|
||||
nth_rewrite 1 [perm_tensor_eq (contr_contr _ _ _)]
|
||||
rw [perm_perm]
|
||||
|
|
|
@ -49,7 +49,7 @@ def pairIso (c : C) : (pair F).obj (Discrete.mk c) ≅ (lift.obj F).obj (OverCol
|
|||
rfl
|
||||
|
||||
/-- The isomorphism between `F.obj (Discrete.mk c1) ⊗ F.obj (Discrete.mk c2)` and
|
||||
`(lift.obj F).obj (OverColor.mk ![c1,c2])` fored by the tensorate. -/
|
||||
`(lift.obj F).obj (OverColor.mk ![c1,c2])` fored by the tensorate. -/
|
||||
def pairIsoSep {c1 c2 : C} : F.obj (Discrete.mk c1) ⊗ F.obj (Discrete.mk c2) ≅
|
||||
(lift.obj F).obj (OverColor.mk ![c1,c2]) := by
|
||||
symm
|
||||
|
|
|
@ -183,7 +183,6 @@ def termNodeSyntax (T : Term) : TermElabM Term := do
|
|||
let strType := toString type
|
||||
let n := (String.splitOn strType "CategoryTheory.MonoidalCategoryStruct.tensorObj").length
|
||||
let const := (String.splitOn strType "Quiver.Hom").length
|
||||
println! "n: {n}, const: {const}"
|
||||
match n, const with
|
||||
| 1, 1 =>
|
||||
match type with
|
||||
|
@ -266,7 +265,7 @@ def withoutContr (stx : Syntax) : TermElabM (List (TSyntax `indexExpr)) := do
|
|||
let indFilt : List (TSyntax `indexExpr) := ind.filter (fun x => ¬ indexExprIsNum x)
|
||||
return ind.filter (fun x => indFilt.count x ≤ 1)
|
||||
|
||||
/-- Takes a list and puts conseutive elements into pairs.
|
||||
/-- Takes a list and puts conseutive elements into pairs.
|
||||
e.g. [0, 1, 2, 3] becomes [(0, 1), (2, 3)]. -/
|
||||
def toPairs (l : List ℕ) : List (ℕ × ℕ) :=
|
||||
match l with
|
||||
|
@ -364,8 +363,6 @@ partial def syntaxFull (stx : Syntax) : TermElabM Term := do
|
|||
| `(tensorExpr| $_:term | $[$args]*) => TensorNode.syntaxFull stx
|
||||
| `(tensorExpr| $a:tensorExpr ⊗ $b:tensorExpr) => do
|
||||
let prodSyntax := prodSyntax (← syntaxFull a) (← syntaxFull b)
|
||||
println! (← getContrPos stx)
|
||||
println! TensorNode.contrListAdjust (← getContrPos stx)
|
||||
let contrSyntax := contrSyntax (← getContrPos stx) prodSyntax
|
||||
return contrSyntax
|
||||
| `(tensorExpr| ($a:tensorExpr)) => do
|
||||
|
@ -383,7 +380,6 @@ def negSyntax (T1 : Term) : Term :=
|
|||
|
||||
end negNode
|
||||
|
||||
|
||||
/-- Returns the full list of indices after contraction. TODO: Include evaluation. -/
|
||||
partial def getIndicesFull (stx : Syntax) : TermElabM (List (TSyntax `indexExpr)) := do
|
||||
match stx with
|
||||
|
|
|
@ -4,7 +4,6 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.Tree.Basic
|
||||
import LLMLean
|
||||
/-!
|
||||
|
||||
## Basic node identities
|
||||
|
|
|
@ -51,19 +51,19 @@ theorem prod_perm_left (t : TensorTree S c) (t2 : TensorTree S c2) :
|
|||
Action.FunctorCategoryEquivalence.functor_obj_obj, ModuleCat.coe_comp, Function.comp_apply]
|
||||
change (S.F.map (σ ▷ OverColor.mk c2) ≫ S.F.map (equivToIso finSumFinEquiv).hom).hom _ = _
|
||||
rw [← S.F.map_comp, ← (Iso.hom_inv_id_assoc (equivToIso finSumFinEquiv)
|
||||
(σ ▷ OverColor.mk c2 ≫ (equivToIso finSumFinEquiv).hom)), S.F.map_comp]
|
||||
(σ ▷ OverColor.mk c2 ≫ (equivToIso finSumFinEquiv).hom)), S.F.map_comp]
|
||||
rfl
|
||||
|
||||
/-- When a `prod` acts on a `perm` node in the right entry, the `perm` node can be moved through
|
||||
the `prod` node via left-whiskering. -/
|
||||
theorem prod_perm_right (t2 : TensorTree S c2) (t : TensorTree S c) :
|
||||
theorem prod_perm_right (t2 : TensorTree S c2) (t : TensorTree S c) :
|
||||
(prod t2 (perm σ t)).tensor = (perm (permProdRight c2 σ) (prod t2 t)).tensor := by
|
||||
simp only [prod_tensor, Functor.id_obj, mk_hom, Action.instMonoidalCategory_tensorObj_V,
|
||||
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||||
Action.FunctorCategoryEquivalence.functor_obj_obj, perm_tensor]
|
||||
change (S.F.map (equivToIso finSumFinEquiv).hom).hom
|
||||
change (S.F.map (equivToIso finSumFinEquiv).hom).hom
|
||||
(((S.F.obj (OverColor.mk c2) ◁ S.F.map σ) ≫ S.F.μ (OverColor.mk c2) (OverColor.mk c')).hom
|
||||
(t2.tensor ⊗ₜ[S.k] t.tensor)) = _
|
||||
(t2.tensor ⊗ₜ[S.k] t.tensor)) = _
|
||||
rw [S.F.μ_natural_right]
|
||||
simp only [Functor.id_obj, mk_hom, Action.instMonoidalCategory_tensorObj_V, Action.comp_hom,
|
||||
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||||
|
@ -73,7 +73,7 @@ theorem prod_perm_right (t2 : TensorTree S c2) (t : TensorTree S c) :
|
|||
have hx : OverColor.mk c2 ◁ σ ≫ (equivToIso finSumFinEquiv).hom =
|
||||
(equivToIso finSumFinEquiv).hom ≫ (permProdRight c2 σ) := by
|
||||
simp only [Functor.id_obj, mk_hom, permProdRight, Iso.hom_inv_id_assoc]
|
||||
rw [hx, S.F.map_comp]
|
||||
rw [hx, S.F.map_comp]
|
||||
rfl
|
||||
|
||||
end TensorTree
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue