feat: Gauge freedom of Higgs fields

This commit is contained in:
jstoobysmith 2024-09-11 15:15:36 -04:00
parent 56d3417457
commit 2c257eb4c0
2 changed files with 32 additions and 0 deletions

View file

@ -206,6 +206,12 @@ lemma isBounded_of_left_eq_neg_right (h : P.IsBounded) :
exact hc1
exact StandardModel.HiggsField.potential.isBounded_𝓵_nonneg h1
lemma nonneg_sum_𝓵₁_to_𝓵₅_of_isBounded (h : P.IsBounded) :
0 ≤ P.𝓵₁/2 + P.𝓵₂/2 + P.𝓵₃ + P.𝓵₄ + P.𝓵₅.re := by
have h1 := isBounded_of_left_eq_neg_right h
have h2 := isBounded_of_left_eq_right h
linarith
end IsBounded
end Potential

View file

@ -165,6 +165,32 @@ theorem rotate_fst_zero_snd_real (φ : HiggsVec) :
· use rotateGuageGroup h
exact rotateGuageGroup_apply h
theorem rotate_fst_real_snd_zero (φ : HiggsVec) :
∃ (g : GaugeGroup), rep g φ = ![Complex.ofReal ‖φ‖, 0] := by
obtain ⟨g, h⟩ := rotate_fst_zero_snd_real φ
let P : GaugeGroup := ⟨1, ⟨!![0, 1; -1, 0], by
rw [@mem_specialUnitaryGroup_iff]
apply And.intro
· rw [mem_unitaryGroup_iff, star_eq_conjTranspose]
ext i j
rw [Matrix.mul_apply]
rw [@Fin.sum_univ_two]
fin_cases i <;> fin_cases j
<;> simp
· simp [det_fin_two]⟩, 1⟩
use P * g
rw [rep.map_mul]
change rep P (rep g φ) = _
rw [h, rep_apply]
simp only [one_pow, Nat.succ_eq_add_one, Nat.reduceAdd, ofReal_eq_coe, mulVec_cons, zero_smul,
coe_smul, mulVec_empty, add_zero, zero_add, one_smul]
funext i
fin_cases i
· simp only [Fin.zero_eta, Fin.isValue, Pi.smul_apply, Function.comp_apply, cons_val_zero,
tail_cons, head_cons, real_smul, mul_one]
· simp only [Fin.mk_one, Fin.isValue, Pi.smul_apply, Function.comp_apply, cons_val_one, head_cons,
tail_cons, smul_zero]
end HiggsVec
/-! TODO: Define the global gauge action on HiggsField. -/