refactor: Some golfing

This commit is contained in:
jstoobysmith 2024-10-19 10:57:09 +00:00
parent ae7f8dea1e
commit 2cb219773e
7 changed files with 12 additions and 30 deletions

View file

@ -67,7 +67,7 @@ lemma on_quadBiLin (S : (PlusU1 n).Charges) :
lemma on_quadBiLin_AFL (S : (PlusU1 n).LinSols) : quadBiLin (BL n).val S.val = 0 := by
rw [on_quadBiLin, YYsol S, SU2Sol S, SU3Sol S]
simp
rfl
lemma add_AFL_quad (S : (PlusU1 n).LinSols) (a b : ) :
accQuad (a • S.val + b • (BL n).val) = a ^ 2 * accQuad S.val := by
@ -100,7 +100,7 @@ lemma on_cubeTriLin (S : (PlusU1 n).Charges) :
lemma on_cubeTriLin_AFL (S : (PlusU1 n).LinSols) :
cubeTriLin (BL n).val (BL n).val S.val = 0 := by
rw [on_cubeTriLin, gravSol S, SU3Sol S]
simp
rfl
lemma add_AFL_cube (S : (PlusU1 n).LinSols) (a b : ) :
accCube (a • S.val + b • (BL n).val) =

View file

@ -237,10 +237,6 @@ lemma finExtractOne_symm_inr_apply {n : } (i : Fin n.succ) (x : Fin n) :
@[simp]
lemma finExtractOne_symm_inl_apply {n : } (i : Fin n.succ) :
(finExtractOne i).symm (Sum.inl 0) = i := by
simp only [Nat.succ_eq_add_one, finExtractOne, Fin.isValue, Equiv.symm_trans_apply, finCongr_symm,
Equiv.symm_symm, Equiv.sumCongr_symm, Equiv.refl_symm, Equiv.sumCongr_apply, Equiv.coe_refl,
Sum.map_inl, id_eq, Equiv.sumAssoc_symm_apply_inl, Equiv.sumComm_symm, Equiv.sumComm_apply,
Sum.swap_inl, finSumFinEquiv_apply_right, finSumFinEquiv_apply_left, finCongr_apply]
rfl
/-- Given an equivalence `Fin n.succ.succ ≃ Fin n.succ.succ`, and an `i : Fin n.succ.succ`,

View file

@ -269,7 +269,6 @@ lemma elimPureTensor_update_right (p : (i : ι1) → s1 i) (q : (i : ι2) → s2
funext x
match x with
| Sum.inl x =>
simp only [Sum.elim_inl, ne_eq, reduceCtorEq, not_false_eq_true, Function.update_noteq]
rfl
| Sum.inr x =>
change Function.update q y r x = _
@ -277,7 +276,7 @@ lemma elimPureTensor_update_right (p : (i : ι1) → s1 i) (q : (i : ι2) → s2
split_ifs
· rename_i h
subst h
simp_all only
rfl
· rfl
@[simp]
@ -295,7 +294,6 @@ lemma elimPureTensor_update_left (p : (i : ι1) → s1 i) (q : (i : ι2) → s2
rfl
· rfl
| Sum.inr y =>
simp only [Sum.elim_inr, ne_eq, reduceCtorEq, not_false_eq_true, Function.update_noteq]
rfl
end

View file

@ -152,8 +152,7 @@ instance (C : Type) : MonoidalCategoryStruct (OverColor C) where
simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Iso.symm_hom, Iso.hom_inv_id]
rfl,
inv_hom_id := by
apply CategoryTheory.Iso.ext
erw [CategoryTheory.Iso.trans_hom]}
rfl}
rightUnitor X := {
hom := Over.isoMk (Equiv.sumEmpty X.left Empty).toIso
inv := (Over.isoMk (Equiv.sumEmpty X.left Empty).toIso).symm
@ -163,8 +162,7 @@ instance (C : Type) : MonoidalCategoryStruct (OverColor C) where
simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Iso.symm_hom, Iso.hom_inv_id]
rfl,
inv_hom_id := by
apply CategoryTheory.Iso.ext
erw [CategoryTheory.Iso.trans_hom]}
rfl}
instance (C : Type) : MonoidalCategory (OverColor C) where
tensorHom_def f g := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => rfl

View file

@ -27,13 +27,9 @@ def map {C D : Type} (f : C → D) : MonoidalFunctor (OverColor C) (OverColor D)
| Sum.inl x => rfl
| Sum.inr x => rfl)
μ_natural_left X Y := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
match x with
| Sum.inl x => rfl
| Sum.inr x => rfl
rfl
μ_natural_right X Y := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
match x with
| Sum.inl x => rfl
| Sum.inr x => rfl
rfl
associativity X Y Z := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
match x with
| Sum.inl (Sum.inl x) => rfl
@ -51,9 +47,7 @@ def map {C D : Type} (f : C → D) : MonoidalFunctor (OverColor C) (OverColor D)
/-- The tensor product on `OverColor C` as a monoidal functor. -/
def tensor (C : Type) : MonoidalFunctor (OverColor C × OverColor C) (OverColor C) where
toFunctor := MonoidalCategory.tensor (OverColor C)
ε := Over.isoMk (Equiv.sumEmpty Empty Empty).symm.toIso (by
ext x
exact Empty.elim x)
ε := Over.isoMk (Equiv.sumEmpty Empty Empty).symm.toIso rfl
μ X Y := Over.isoMk (Equiv.sumSumSumComm X.1.left X.2.left Y.1.left Y.2.left).toIso (by
ext x
match x with

View file

@ -180,14 +180,14 @@ lemma contrFin1Fin1_hom_hom_tprod {n : } (c : Fin n.succ.succ → S.C)
change ((Action.forget _ _).mapIso (S.contrFin1Fin1 c i j h)).hom _ = _
trans ((Action.forget _ _).mapIso (S.contrFin1Fin1 c i j h)).toLinearEquiv
(PiTensorProduct.tprod S.k x)
· congr
· rfl
erw [← LinearEquiv.eq_symm_apply]
erw [contrFin1Fin1_inv_tmul]
congr
funext i
match i with
| Sum.inl 0 =>
simp
rfl
| Sum.inr 0 =>
simp only [Nat.succ_eq_add_one, Fin.isValue, mk_hom, Function.comp_apply,
Discrete.functor_obj_eq_as]
@ -217,9 +217,7 @@ lemma contrIso_hom_hom {n : } {c1 : Fin n.succ.succ → S.C}
(OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom ≫
((S.contrFin1Fin1 c1 i j h).hom.hom ⊗
(S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom).hom) := by
rw [contrIso]
simp [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, Action.comp_hom,
extractOne_homToEquiv, Action.instMonoidalCategory_tensorHom_hom]
rfl
/-- `contrMap` is a function that takes a natural number `n`, a function `c` from
`Fin n.succ.succ` to `S.C`, an index `i` of type `Fin n.succ.succ`, an index `j` of type

View file

@ -146,7 +146,6 @@ lemma contrIso_comm_aux_3 {n : } {c c1 : Fin n.succ.succ → S.C}
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j))).hom) ≫
(S.F.map (extractTwo i j σ)) := by
rw [← Functor.map_comp, ← Functor.map_comp]
apply congrArg
rfl
exact congrArg (λ f => Action.Hom.hom f) h1
@ -234,8 +233,7 @@ lemma contrMap_naturality {n : } {c c1 : Fin n.succ.succ → S.C}
erw [CategoryTheory.Category.id_comp, CategoryTheory.Category.comp_id]
erw [CategoryTheory.Category.comp_id]
rw [S.contr.naturality]
simp only [Nat.succ_eq_add_one, extractOne_homToEquiv, Monoidal.tensorUnit_obj,
Monoidal.tensorUnit_map, Category.comp_id]
rfl
end
end TensorStruct