refactor: Rename ofCrAnFieldOp to ofCrAnOp

This commit is contained in:
jstoobysmith 2025-02-06 10:09:30 +00:00
parent 8cc273fe38
commit 2d561dd89d
7 changed files with 165 additions and 165 deletions

View file

@ -27,16 +27,16 @@ variable {𝓕 : FieldSpecification}
lemma normalOrder_eq_ι_normalOrderF (a : 𝓕.FieldOpFreeAlgebra) :
𝓝(ι a) = ι 𝓝ᶠ(a) := rfl
lemma normalOrder_ofCrAnFieldOpList (φs : List 𝓕.CrAnFieldOp) :
𝓝(ofCrAnFieldOpList φs) = normalOrderSign φs • ofCrAnFieldOpList (normalOrderList φs) := by
rw [ofCrAnFieldOpList, normalOrder_eq_ι_normalOrderF, normalOrderF_ofCrAnListF]
lemma normalOrder_ofCrAnOpList (φs : List 𝓕.CrAnFieldOp) :
𝓝(ofCrAnOpList φs) = normalOrderSign φs • ofCrAnOpList (normalOrderList φs) := by
rw [ofCrAnOpList, normalOrder_eq_ι_normalOrderF, normalOrderF_ofCrAnListF]
rfl
@[simp]
lemma normalOrder_one_eq_one : normalOrder (𝓕 := 𝓕) 1 = 1 := by
have h1 : 1 = ofCrAnFieldOpList (𝓕 := 𝓕) [] := by simp [ofCrAnFieldOpList]
have h1 : 1 = ofCrAnOpList (𝓕 := 𝓕) [] := by simp [ofCrAnOpList]
rw [h1]
rw [normalOrder_ofCrAnFieldOpList]
rw [normalOrder_ofCrAnOpList]
simp
@[simp]
@ -48,14 +48,14 @@ lemma normalOrder_ofFieldOpList_nil : normalOrder (𝓕 := 𝓕) (ofFieldOpList
simp
@[simp]
lemma normalOrder_ofCrAnFieldOpList_nil : normalOrder (𝓕 := 𝓕) (ofCrAnFieldOpList []) = 1 := by
rw [normalOrder_ofCrAnFieldOpList]
lemma normalOrder_ofCrAnOpList_nil : normalOrder (𝓕 := 𝓕) (ofCrAnOpList []) = 1 := by
rw [normalOrder_ofCrAnOpList]
simp only [normalOrderSign_nil, normalOrderList_nil, one_smul]
rfl
lemma ofCrAnFieldOpList_eq_normalOrder (φs : List 𝓕.CrAnFieldOp) :
ofCrAnFieldOpList (normalOrderList φs) = normalOrderSign φs • 𝓝(ofCrAnFieldOpList φs) := by
rw [normalOrder_ofCrAnFieldOpList, smul_smul, normalOrderSign, Wick.koszulSign_mul_self,
lemma ofCrAnOpList_eq_normalOrder (φs : List 𝓕.CrAnFieldOp) :
ofCrAnOpList (normalOrderList φs) = normalOrderSign φs • 𝓝(ofCrAnOpList φs) := by
rw [normalOrder_ofCrAnOpList, smul_smul, normalOrderSign, Wick.koszulSign_mul_self,
one_smul]
lemma normalOrder_normalOrder_mid (a b c : 𝓕.FieldOpAlgebra) :
@ -165,16 +165,16 @@ lemma normalOrder_ofFieldOp_ofFieldOp_swap (φ φ' : 𝓕.FieldOp) :
rw [ofFieldOp_mul_ofFieldOp_eq_superCommute]
simp
lemma normalOrder_ofCrAnFieldOp_ofCrAnFieldOpList (φ : 𝓕.CrAnFieldOp)
(φs : List 𝓕.CrAnFieldOp) : 𝓝(ofCrAnFieldOp φ * ofCrAnFieldOpList φs) =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • 𝓝(ofCrAnFieldOpList φs * ofCrAnFieldOp φ) := by
rw [← ofCrAnFieldOpList_singleton, ofCrAnFieldOpList_mul_ofCrAnFieldOpList_eq_superCommute]
lemma normalOrder_ofCrAnOp_ofCrAnOpList (φ : 𝓕.CrAnFieldOp)
(φs : List 𝓕.CrAnFieldOp) : 𝓝(ofCrAnOp φ * ofCrAnOpList φs) =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • 𝓝(ofCrAnOpList φs * ofCrAnOp φ) := by
rw [← ofCrAnOpList_singleton, ofCrAnOpList_mul_ofCrAnOpList_eq_superCommute]
simp
lemma normalOrder_ofCrAnFieldOp_ofFieldOpList_swap (φ : 𝓕.CrAnFieldOp) (φ' : List 𝓕.FieldOp) :
𝓝(ofCrAnFieldOp φ * ofFieldOpList φ') = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
𝓝(ofFieldOpList φ' * ofCrAnFieldOp φ) := by
rw [← ofCrAnFieldOpList_singleton, ofCrAnFieldOpList_mul_ofFieldOpList_eq_superCommute]
lemma normalOrder_ofCrAnOp_ofFieldOpList_swap (φ : 𝓕.CrAnFieldOp) (φ' : List 𝓕.FieldOp) :
𝓝(ofCrAnOp φ * ofFieldOpList φ') = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
𝓝(ofFieldOpList φ' * ofCrAnOp φ) := by
rw [← ofCrAnOpList_singleton, ofCrAnOpList_mul_ofFieldOpList_eq_superCommute]
simp
lemma normalOrder_anPart_ofFieldOpList_swap (φ : 𝓕.FieldOp) (φ' : List 𝓕.FieldOp) :
@ -184,11 +184,11 @@ lemma normalOrder_anPart_ofFieldOpList_swap (φ : 𝓕.FieldOp) (φ' : List 𝓕
simp
| .position φ =>
simp only [anPart_position, instCommGroup.eq_1]
rw [normalOrder_ofCrAnFieldOp_ofFieldOpList_swap]
rw [normalOrder_ofCrAnOp_ofFieldOpList_swap]
rfl
| .outAsymp φ =>
simp only [anPart_posAsymp, instCommGroup.eq_1]
rw [normalOrder_ofCrAnFieldOp_ofFieldOpList_swap]
rw [normalOrder_ofCrAnOp_ofFieldOpList_swap]
rfl
lemma normalOrder_ofFieldOpList_anPart_swap (φ : 𝓕.FieldOp) (φ' : List 𝓕.FieldOp) :
@ -224,18 +224,18 @@ The proof of this result ultimetly depends on
- `superCommuteF_ofCrAnListF_ofFieldOpListF_eq_sum`
- `normalOrderSign_eraseIdx`
-/
lemma ofCrAnFieldOp_superCommute_normalOrder_ofCrAnFieldOpList_sum (φ : 𝓕.CrAnFieldOp)
(φs : List 𝓕.CrAnFieldOp) : [ofCrAnFieldOp φ, 𝓝(ofCrAnFieldOpList φs)]ₛ = ∑ n : Fin φs.length,
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ (φs.take n)) • [ofCrAnFieldOp φ, ofCrAnFieldOp φs[n]]ₛ
* 𝓝(ofCrAnFieldOpList (φs.eraseIdx n)) := by
rw [normalOrder_ofCrAnFieldOpList, map_smul]
rw [superCommute_ofCrAnFieldOp_ofCrAnFieldOpList_eq_sum, Finset.smul_sum,
lemma ofCrAnOp_superCommute_normalOrder_ofCrAnOpList_sum (φ : 𝓕.CrAnFieldOp)
(φs : List 𝓕.CrAnFieldOp) : [ofCrAnOp φ, 𝓝(ofCrAnOpList φs)]ₛ = ∑ n : Fin φs.length,
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ (φs.take n)) • [ofCrAnOp φ, ofCrAnOp φs[n]]ₛ
* 𝓝(ofCrAnOpList (φs.eraseIdx n)) := by
rw [normalOrder_ofCrAnOpList, map_smul]
rw [superCommute_ofCrAnOp_ofCrAnOpList_eq_sum, Finset.smul_sum,
sum_normalOrderList_length]
congr
funext n
simp only [instCommGroup.eq_1, List.get_eq_getElem, normalOrderList_get_normalOrderEquiv,
normalOrderList_eraseIdx_normalOrderEquiv, Algebra.smul_mul_assoc, Fin.getElem_fin]
rw [ofCrAnFieldOpList_eq_normalOrder, mul_smul_comm, smul_smul, smul_smul]
rw [ofCrAnOpList_eq_normalOrder, mul_smul_comm, smul_smul, smul_smul]
by_cases hs : (𝓕 |>ₛ φ) = (𝓕 |>ₛ φs[n])
· congr
erw [normalOrderSign_eraseIdx, ← hs]
@ -250,14 +250,14 @@ lemma ofCrAnFieldOp_superCommute_normalOrder_ofCrAnFieldOpList_sum (φ : 𝓕.Cr
· erw [superCommute_diff_statistic hs]
simp
lemma ofCrAnFieldOp_superCommute_normalOrder_ofFieldOpList_sum (φ : 𝓕.CrAnFieldOp)
lemma ofCrAnOp_superCommute_normalOrder_ofFieldOpList_sum (φ : 𝓕.CrAnFieldOp)
(φs : List 𝓕.FieldOp) :
[ofCrAnFieldOp φ, 𝓝(ofFieldOpList φs)]ₛ = ∑ n : Fin φs.length, 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ (φs.take n)) •
[ofCrAnFieldOp φ, ofFieldOp φs[n]]ₛ * 𝓝(ofFieldOpList (φs.eraseIdx n)) := by
[ofCrAnOp φ, 𝓝(ofFieldOpList φs)]ₛ = ∑ n : Fin φs.length, 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ (φs.take n)) •
[ofCrAnOp φ, ofFieldOp φs[n]]ₛ * 𝓝(ofFieldOpList (φs.eraseIdx n)) := by
conv_lhs =>
rw [ofFieldOpList_eq_sum, map_sum, map_sum]
enter [2, s]
rw [ofCrAnFieldOp_superCommute_normalOrder_ofCrAnFieldOpList_sum, CrAnSection.sum_over_length]
rw [ofCrAnOp_superCommute_normalOrder_ofCrAnOpList_sum, CrAnSection.sum_over_length]
enter [2, n]
rw [CrAnSection.take_statistics_eq_take_state_statistics, smul_mul_assoc]
rw [Finset.sum_comm]
@ -285,13 +285,13 @@ lemma anPart_superCommute_normalOrder_ofFieldOpList_sum (φ : 𝓕.FieldOp) (φs
simp
| .position φ =>
simp only [anPart_position, instCommGroup.eq_1, Fin.getElem_fin, Algebra.smul_mul_assoc]
rw [ofCrAnFieldOp_superCommute_normalOrder_ofFieldOpList_sum]
rw [ofCrAnOp_superCommute_normalOrder_ofFieldOpList_sum]
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnFieldOpToFieldOp_prod,
Fin.getElem_fin, Algebra.smul_mul_assoc]
rfl
| .outAsymp φ =>
simp only [anPart_posAsymp, instCommGroup.eq_1, Fin.getElem_fin, Algebra.smul_mul_assoc]
rw [ofCrAnFieldOp_superCommute_normalOrder_ofFieldOpList_sum]
rw [ofCrAnOp_superCommute_normalOrder_ofFieldOpList_sum]
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnFieldOpToFieldOp_prod,
Fin.getElem_fin, Algebra.smul_mul_assoc]
rfl
@ -339,7 +339,7 @@ For a field specification `𝓕`, the following relation holds in the algebra `
`φ * 𝓝(φ₀φ₁…φₙ) = 𝓝(φφ₀φ₁…φₙ) + ∑ i, (𝓢(φ,φ₀φ₁…φᵢ₋₁) • [anPartF φ, φᵢ]ₛ) * 𝓝(φ₀φ₁…φᵢ₋₁φᵢ₊₁…φₙ)`.
The proof of this ultimently depends on :
- `ofCrAnFieldOp_superCommute_normalOrder_ofCrAnFieldOpList_sum`
- `ofCrAnOp_superCommute_normalOrder_ofCrAnOpList_sum`
-/
lemma ofFieldOp_mul_normalOrder_ofFieldOpList_eq_sum (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) :
ofFieldOp φ * 𝓝(ofFieldOpList φs) =