Merge pull request #249 from HEPLean/FeynmanDiagrams

refactor: Change defn of Wick string
This commit is contained in:
Joseph Tooby-Smith 2024-11-29 07:19:04 +00:00 committed by GitHub
commit 301eff5853
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 202 additions and 87 deletions

View file

@ -15,6 +15,12 @@ This file is currently a stub.
We will formally define the operator ring, in terms of the fields present in the theory.
## Futher reading
- https://physics.stackexchange.com/questions/258718/ and links therein
- Ryan Thorngren (https://physics.stackexchange.com/users/10336/ryan-thorngren), Fermions,
different species and (anti-)commutation rules, URL (version: 2019-02-20) :
https://physics.stackexchange.com/q/461929
-/
namespace TwoComplexScalar

View file

@ -24,12 +24,16 @@ open PreFeynmanRule
/-- A Wick contraction for a Wick string is a series of pairs `i` and `j` of indices
to be contracted, subject to ordering and subject to the condition that they can
be contracted (although this may need to be removed for full generality). -/
inductive WickContract : {n : } → {c : Fin n → 𝓔} → (str : WickString c final) →
be contracted. -/
inductive WickContract : {ni : } → {i : Fin ni → 𝓔} → {n : } → {c : Fin n → 𝓔} →
{no : } → {o : Fin no → 𝓔} →
(str : WickString i c o final) →
{k : } → (b1 : Fin k → Fin n) → (b2 : Fin k → Fin n) → Type where
| string {n : } {c : Fin n → 𝓔} {str : WickString c final} : WickContract str Fin.elim0 Fin.elim0
| contr {n : } {c : Fin n → 𝓔} {str : WickString c final} {k : }
{b1 : Fin k → Fin n} {b2 : Fin k → Fin n}: (i : Fin n) →
| string {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final} : WickContract str Fin.elim0 Fin.elim0
| contr {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final} {k : }
{b1 : Fin k → Fin n} {b2 : Fin k → Fin n} : (i : Fin n) →
(j : Fin n) → (h : c j = ξ (c i)) →
(hilej : i < j) → (hb1 : ∀ r, b1 r < i) → (hb2i : ∀ r, b2 r ≠ i) → (hb2j : ∀ r, b2 r ≠ j) →
(w : WickContract str b1 b2) →
@ -38,13 +42,15 @@ inductive WickContract : {n : } → {c : Fin n → 𝓔} → (str : WickStrin
namespace WickContract
/-- The number of nodes of a Wick contraction. -/
def size {n k : } {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n} :
def size {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final} {k : } {b1 b2 : Fin k → Fin n} :
WickContract str b1 b2 → := fun
| string => 0
| contr _ _ _ _ _ _ _ w => w.size + 1
/-- The number of nodes in a wick contraction tree is the same as `k`. -/
lemma size_eq_k {n k : } {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n} :
lemma size_eq_k {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final} {k : } {b1 b2 : Fin k → Fin n} :
(w : WickContract str b1 b2) → w.size = k := fun
| string => rfl
| contr _ _ _ _ _ _ _ w => by
@ -52,12 +58,15 @@ lemma size_eq_k {n k : } {c : Fin n → 𝓔} {str : WickString c final} {b1
/-- The map giving the vertices on the left-hand-side of a contraction. -/
@[nolint unusedArguments]
def boundFst {n k : } {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n} :
def boundFst {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final}
{k : } {b1 b2 : Fin k → Fin n} :
WickContract str b1 b2 → Fin k → Fin n := fun _ => b1
@[simp]
lemma boundFst_contr_castSucc {n k : } {c : Fin n → 𝓔} {str : WickString c final}
{b1 b2 : Fin k → Fin n} (i j : Fin n)
lemma boundFst_contr_castSucc {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final}
{k : } {b1 b2 : Fin k → Fin n} (i j : Fin n)
(h : c j = ξ (c i))
(hilej : i < j)
(hb1 : ∀ r, b1 r < i)
@ -68,8 +77,9 @@ lemma boundFst_contr_castSucc {n k : } {c : Fin n → 𝓔} {str : WickString
simp only [boundFst, Fin.snoc_castSucc]
@[simp]
lemma boundFst_contr_last {n k : } {c : Fin n → 𝓔} {str : WickString c final}
{b1 b2 : Fin k → Fin n} (i j : Fin n)
lemma boundFst_contr_last {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final}
{k : } {b1 b2 : Fin k → Fin n} (i j : Fin n)
(h : c j = ξ (c i))
(hilej : i < j)
(hb1 : ∀ r, b1 r < i)
@ -79,8 +89,9 @@ lemma boundFst_contr_last {n k : } {c : Fin n → 𝓔} {str : WickString c f
(contr i j h hilej hb1 hb2i hb2j w).boundFst (Fin.last k) = i := by
simp only [boundFst, Fin.snoc_last]
lemma boundFst_strictMono {n k : } {c : Fin n → 𝓔} {str : WickString c final}
{b1 b2 : Fin k → Fin n} : (w : WickContract str b1 b2) → StrictMono w.boundFst := fun
lemma boundFst_strictMono {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final}
{k : } {b1 b2 : Fin k → Fin n} : (w : WickContract str b1 b2) → StrictMono w.boundFst := fun
| string => fun k => Fin.elim0 k
| contr i j _ _ hb1 _ _ w => by
intro r s hrs
@ -108,12 +119,15 @@ lemma boundFst_strictMono {n k : } {c : Fin n → 𝓔} {str : WickString c f
/-- The map giving the vertices on the right-hand-side of a contraction. -/
@[nolint unusedArguments]
def boundSnd {n k : } {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n} :
def boundSnd {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final}
{k : } {b1 b2 : Fin k → Fin n} :
WickContract str b1 b2 → Fin k → Fin n := fun _ => b2
@[simp]
lemma boundSnd_contr_castSucc {n k : } {c : Fin n → 𝓔} {str : WickString c final}
{b1 b2 : Fin k → Fin n} (i j : Fin n)
lemma boundSnd_contr_castSucc {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final}
{k : } {b1 b2 : Fin k → Fin n} (i j : Fin n)
(h : c j = ξ (c i))
(hilej : i < j)
(hb1 : ∀ r, b1 r < i)
@ -124,8 +138,9 @@ lemma boundSnd_contr_castSucc {n k : } {c : Fin n → 𝓔} {str : WickString
simp only [boundSnd, Fin.snoc_castSucc]
@[simp]
lemma boundSnd_contr_last {n k : } {c : Fin n → 𝓔} {str : WickString c final}
{b1 b2 : Fin k → Fin n} (i j : Fin n)
lemma boundSnd_contr_last {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final}
{k : } {b1 b2 : Fin k → Fin n} (i j : Fin n)
(h : c j = ξ (c i))
(hilej : i < j)
(hb1 : ∀ r, b1 r < i)
@ -135,8 +150,10 @@ lemma boundSnd_contr_last {n k : } {c : Fin n → 𝓔} {str : WickString c f
(contr i j h hilej hb1 hb2i hb2j w).boundSnd (Fin.last k) = j := by
simp only [boundSnd, Fin.snoc_last]
lemma boundSnd_injective {n k : } {c : Fin n → 𝓔} {str : WickString c final}
{b1 b2 : Fin k → Fin n} : (w : WickContract str b1 b2) → Function.Injective w.boundSnd := fun
lemma boundSnd_injective {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final}
{k : } {b1 b2 : Fin k → Fin n} :
(w : WickContract str b1 b2) → Function.Injective w.boundSnd := fun
| string => by
intro i j _
exact Fin.elim0 i
@ -162,8 +179,9 @@ lemma boundSnd_injective {n k : } {c : Fin n → 𝓔} {str : WickString c fi
· subst hs
rfl
lemma color_boundSnd_eq_dual_boundFst {n k : } {c : Fin n → 𝓔} {str : WickString c final}
{b1 b2 : Fin k → Fin n} :
lemma color_boundSnd_eq_dual_boundFst {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final}
{k : } {b1 b2 : Fin k → Fin n} :
(w : WickContract str b1 b2) → (i : Fin k) → c (w.boundSnd i) = ξ (c (w.boundFst i)) := fun
| string => fun i => Fin.elim0 i
| contr i j hij hilej hi _ _ w => fun r => by
@ -174,8 +192,9 @@ lemma color_boundSnd_eq_dual_boundFst {n k : } {c : Fin n → 𝓔} {str : Wi
· subst hr
simpa using hij
lemma boundFst_lt_boundSnd {n k : } {c : Fin n → 𝓔} {str : WickString c final}
{b1 b2 : Fin k → Fin n} : (w : WickContract str b1 b2) → (i : Fin k) →
lemma boundFst_lt_boundSnd {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final}
{k : } {b1 b2 : Fin k → Fin n} : (w : WickContract str b1 b2) → (i : Fin k) →
w.boundFst i < w.boundSnd i := fun
| string => fun i => Fin.elim0 i
| contr i j hij hilej hi _ _ w => fun r => by
@ -187,8 +206,10 @@ lemma boundFst_lt_boundSnd {n k : } {c : Fin n → 𝓔} {str : WickString c
simp only [boundFst_contr_last, boundSnd_contr_last]
exact hilej
lemma boundFst_neq_boundSnd {n k : } {c : Fin n → 𝓔} {str : WickString c final}
{b1 b2 : Fin k → Fin n} : (w : WickContract str b1 b2) → (r1 r2 : Fin k) → b1 r1 ≠ b2 r2 := fun
lemma boundFst_neq_boundSnd {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final}
{k : } {b1 b2 : Fin k → Fin n} :
(w : WickContract str b1 b2) → (r1 r2 : Fin k) → b1 r1 ≠ b2 r2 := fun
| string => fun i => Fin.elim0 i
| contr i j _ hilej h1 h2i h2j w => fun r s => by
rcases Fin.eq_castSucc_or_eq_last r with hr | hr
@ -212,19 +233,23 @@ lemma boundFst_neq_boundSnd {n k : } {c : Fin n → 𝓔} {str : WickString c
/-- Casts a Wick contraction from `WickContract str b1 b2` to `WickContract str b1' b2'` with a
proof that `b1 = b1'` and `b2 = b2'`, and that they are defined from the same `k = k'`. -/
def castMaps {n k k' : } {c : Fin n → 𝓔}
{str : WickString c final} {b1 b2 : Fin k → Fin n} {b1' b2' : Fin k' → Fin n}
def castMaps {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final}
{k k' : } {b1 b2 : Fin k → Fin n} {b1' b2' : Fin k' → Fin n}
(hk : k = k')
(hb1 : b1 = b1' ∘ Fin.cast hk) (hb2 : b2 = b2' ∘ Fin.cast hk) (w : WickContract str b1 b2) :
WickContract str b1' b2' :=
cast (by subst hk; rfl) (hb2 ▸ hb1 ▸ w)
@[simp]
lemma castMaps_rfl {n k : } {c : Fin n → 𝓔}{str : WickString c final}
{b1 b2 : Fin k → Fin n} (w : WickContract str b1 b2) :
lemma castMaps_rfl {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final}
{k : } {b1 b2 : Fin k → Fin n} (w : WickContract str b1 b2) :
castMaps rfl rfl rfl w = w := rfl
lemma mem_snoc' {n k : } {c : Fin n → 𝓔} {str : WickString c final} {b1' b2' : Fin k → Fin n} :
lemma mem_snoc' {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final}
{k : } {b1' b2' : Fin k → Fin n} :
(w : WickContract str b1' b2') →
{k' : } → (hk' : k'.succ = k) →
(b1 b2 : Fin k' → Fin n) → (i j : Fin n) → (h : c j = ξ (c i)) →
@ -266,14 +291,18 @@ lemma mem_snoc' {n k : } {c : Fin n → 𝓔} {str : WickString c final} {b1'
subst hb1'' hb2'' hi hj
simp
lemma mem_snoc {n k : } {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n}
lemma mem_snoc {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final}
{k : } {b1 b2 : Fin k → Fin n}
(i j : Fin n) (h : c j = ξ (c i)) (hilej : i < j) (hb1 : ∀ r, b1 r < i)
(hb2i : ∀ r, b2 r ≠ i) (hb2j : ∀ r, b2 r ≠ j)
(w : WickContract str (Fin.snoc b1 i) (Fin.snoc b2 j)) :
∃ (w' : WickContract str b1 b2), w = contr i j h hilej hb1 hb2i hb2j w' := by
exact mem_snoc' w rfl b1 b2 i j h hilej hb1 hb2i hb2j rfl rfl
lemma is_subsingleton {n k : } {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n} :
lemma is_subsingleton {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final}
{k : } {b1 b2 : Fin k → Fin n} :
Subsingleton (WickContract str b1 b2) := Subsingleton.intro fun w1 w2 => by
induction k with
| zero =>
@ -301,7 +330,9 @@ lemma eq_snoc_castSucc {k n : } (b1 : Fin k.succ → Fin n) :
/-- The construction of a Wick contraction from maps `b1 b2 : Fin k → Fin n`, with the former
giving the first index to be contracted, and the latter the second index. These
maps must satisfy a series of conditions. -/
def fromMaps {n k : } {c : Fin n → 𝓔} {str : WickString c final} (b1 b2 : Fin k → Fin n)
def fromMaps {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final}
{k : } (b1 b2 : Fin k → Fin n)
(hi : ∀ i, c (b2 i) = ξ (c (b1 i)))
(hb1ltb2 : ∀ i, b1 i < b2 i)
(hb1 : StrictMono b1)
@ -330,7 +361,9 @@ def fromMaps {n k : } {c : Fin n → 𝓔} {str : WickString c final} (b1 b2
/-- Given a Wick contraction with `k.succ` contractions, returns the Wick contraction with
`k` contractions by dropping the last contraction (defined by the first index contracted). -/
def dropLast {n k : } {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k.succ → Fin n}
def dropLast {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final}
{k : } {b1 b2 : Fin k.succ → Fin n}
(w : WickContract str b1 b2) : WickContract str (b1 ∘ Fin.castSucc) (b2 ∘ Fin.castSucc) :=
fromMaps (b1 ∘ Fin.castSucc) (b2 ∘ Fin.castSucc)
(fun i => color_boundSnd_eq_dual_boundFst w i.castSucc)
@ -339,14 +372,17 @@ def dropLast {n k : } {c : Fin n → 𝓔} {str : WickString c final} {b1 b2
(fun r1 r2 => boundFst_neq_boundSnd w r1.castSucc r2.castSucc)
(Function.Injective.comp w.boundSnd_injective (Fin.castSucc_injective k))
lemma eq_from_maps {n k : } {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n}
lemma eq_from_maps {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final}
{k : } {b1 b2 : Fin k → Fin n}
(w : WickContract str b1 b2) :
w = fromMaps w.boundFst w.boundSnd w.color_boundSnd_eq_dual_boundFst
w.boundFst_lt_boundSnd w.boundFst_strictMono w.boundFst_neq_boundSnd
w.boundSnd_injective := is_subsingleton.allEq w _
lemma eq_dropLast_contr {n k : } {c : Fin n → 𝓔} {str : WickString c final}
{b1 b2 : Fin k.succ → Fin n} (w : WickContract str b1 b2) :
lemma eq_dropLast_contr {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final}
{k : } {b1 b2 : Fin k.succ → Fin n} (w : WickContract str b1 b2) :
w = castMaps rfl (eq_snoc_castSucc b1).symm (eq_snoc_castSucc b2).symm
(contr (b1 (Fin.last k)) (b2 (Fin.last k))
(w.color_boundSnd_eq_dual_boundFst (Fin.last k))
@ -359,12 +395,14 @@ lemma eq_dropLast_contr {n k : } {c : Fin n → 𝓔} {str : WickString c fin
rfl
/-- Wick contractions of a given Wick string with `k` different contractions. -/
def Level {n : } {c : Fin n → 𝓔} (str : WickString c final) (k : ) : Type :=
def Level {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} (str : WickString i c o final) (k : ) : Type :=
Σ (b1 : Fin k → Fin n) (b2 : Fin k → Fin n), WickContract str b1 b2
/-- There is a finite number of Wick contractions with no contractions. In particular,
this is just the original Wick string. -/
instance levelZeroFintype {n : } {c : Fin n → 𝓔} (str : WickString c final) :
instance levelZeroFintype {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} (str : WickString i c o final) :
Fintype (Level str 0) where
elems := {⟨Fin.elim0, Fin.elim0, WickContract.string⟩}
complete := by
@ -378,7 +416,9 @@ instance levelZeroFintype {n : } {c : Fin n → 𝓔} (str : WickString c fin
rw [is_subsingleton.allEq w string]
/-- The pairs of additional indices which can be contracted given a Wick contraction. -/
structure ContrPair {n : } {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n}
structure ContrPair {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final}
{k : } {b1 b2 : Fin k → Fin n}
(w : WickContract str b1 b2) where
/-- The first index in the contraction pair. -/
i : Fin n
@ -393,8 +433,9 @@ structure ContrPair {n : } {c : Fin n → 𝓔} {str : WickString c final} {b
/-- The pairs of additional indices which can be contracted, given an existing wick contraction,
is equivalent to the a subtype of `Fin n × Fin n` defined by certain conditions equivalent
to the conditions appearing in `ContrPair`. -/
def contrPairEquivSubtype {n : } {c : Fin n → 𝓔} {str : WickString c final}
{b1 b2 : Fin k → Fin n} (w : WickContract str b1 b2) :
def contrPairEquivSubtype {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final}
{k : } {b1 b2 : Fin k → Fin n} (w : WickContract str b1 b2) :
ContrPair w ≃ {x : Fin n × Fin n // c x.2 = ξ (c x.1) ∧ x.1 < x.2 ∧
(∀ r, b1 r < x.1) ∧ (∀ r, b2 r ≠ x.1) ∧ (∀ r, b2 r ≠ x.2)} where
toFun cp := ⟨⟨cp.i, cp.j⟩, ⟨cp.h, cp.hilej, cp.hb1, cp.hb2i, cp.hb2j⟩⟩
@ -412,7 +453,9 @@ def contrPairEquivSubtype {n : } {c : Fin n → 𝓔} {str : WickString c fin
obtain ⟨left_3, right⟩ := right
simp_all only [ne_eq]
lemma heq_eq {n : } {c : Fin n → 𝓔} {b1 b2 b1' b2' : Fin k → Fin n} {str : WickString c final}
lemma heq_eq {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final}
{k : } {b1 b2 b1' b2' : Fin k → Fin n}
(w : WickContract str b1 b2)
(w' : WickContract str b1' b2') (h1 : b1 = b1') (h2 : b2 = b2') : HEq w w':= by
subst h1 h2
@ -421,7 +464,8 @@ lemma heq_eq {n : } {c : Fin n → 𝓔} {b1 b2 b1' b2' : Fin k → Fin n} {s
/-- The equivalence between Wick contractions consisting of `k.succ` contractions and
those with `k` contractions paired with a suitable contraction pair. -/
def levelSuccEquiv {n : } {c : Fin n → 𝓔} (str : WickString c final) (k : ) :
def levelSuccEquiv {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} (str : WickString i c o final) (k : ) :
Level str k.succ ≃ (w : Level str k) × ContrPair w.2.2 where
toFun w :=
match w with
@ -473,21 +517,29 @@ def levelSuccEquiv {n : } {c : Fin n → 𝓔} (str : WickString c final) (k
/-- The sum of `boundFst` and `boundSnd`, giving on `Sum.inl k` the first index
in the `k`th contraction, and on `Sum.inr k` the second index in the `k`th contraction. -/
def bound {n k : } {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n}
def bound {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final}
{k : } {b1 b2 : Fin k → Fin n}
(w : WickContract str b1 b2) : Fin k ⊕ Fin k → Fin n :=
Sum.elim w.boundFst w.boundSnd
/-- On `Sum.inl k` the map `bound` acts via `boundFst`. -/
@[simp]
lemma bound_inl {n k : } {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n}
lemma bound_inl {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final}
{k : } {b1 b2 : Fin k → Fin n}
(w : WickContract str b1 b2) (i : Fin k) : w.bound (Sum.inl i) = w.boundFst i := rfl
/-- On `Sum.inr k` the map `bound` acts via `boundSnd`. -/
@[simp]
lemma bound_inr {n k : } {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n}
lemma bound_inr {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final}
{k : } {b1 b2 : Fin k → Fin n}
(w : WickContract str b1 b2) (i : Fin k) : w.bound (Sum.inr i) = w.boundSnd i := rfl
lemma bound_injection {n k : } {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n}
lemma bound_injection {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final}
{k : } {b1 b2 : Fin k → Fin n}
(w : WickContract str b1 b2) : Function.Injective w.bound := by
intro x y h
match x, y with
@ -504,7 +556,9 @@ lemma bound_injection {n k : } {c : Fin n → 𝓔} {str : WickString c final
simp only [bound_inr, bound_inl] at h
exact False.elim (w.boundFst_neq_boundSnd y x h.symm)
lemma bound_le_total {n k : } {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n}
lemma bound_le_total {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final}
{k : } {b1 b2 : Fin k → Fin n}
(w : WickContract str b1 b2) : 2 * k ≤ n := by
refine Fin.nonempty_embedding_iff.mp ⟨w.bound ∘ finSumFinEquiv.symm ∘ Fin.cast (Nat.two_mul k),
?_⟩
@ -514,16 +568,24 @@ lemma bound_le_total {n k : } {c : Fin n → 𝓔} {str : WickString c final}
/-- The list of fields (indexed by `Fin n`) in a Wick contraction which are not bound,
i.e. which do not appear in any contraction. -/
def unboundList {n k : } {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n}
def unboundList {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final}
{k : } {b1 b2 : Fin k → Fin n}
(w : WickContract str b1 b2) : List (Fin n) :=
List.filter (fun i => decide (∀ r, w.bound r ≠ i)) (List.finRange n)
lemma unboundList_nodup {n k : } {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n}
/-- THe list of field positions which are not contracted has no duplicates. -/
lemma unboundList_nodup {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final}
{k : } {b1 b2 : Fin k → Fin n}
(w : WickContract str b1 b2) : (w.unboundList).Nodup :=
List.Nodup.filter _ (List.nodup_finRange n)
lemma unboundList_length {n k : } {c : Fin n → 𝓔} {str : WickString c final}
{b1 b2 : Fin k → Fin n} (w : WickContract str b1 b2) :
/-- The length of the `unboundList` is equal to `n - 2 * k`. That is
the total number of fields minus the number of contracted fields. -/
lemma unboundList_length {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final}
{k : } {b1 b2 : Fin k → Fin n} (w : WickContract str b1 b2) :
w.unboundList.length = n - 2 * k := by
rw [← List.Nodup.dedup w.unboundList_nodup]
rw [← List.card_toFinset, unboundList]
@ -548,29 +610,30 @@ lemma unboundList_length {n k : } {c : Fin n → 𝓔} {str : WickString c fi
decide_eq_true_eq, Finset.mem_image, Finset.mem_univ, true_and, Sum.exists, not_or, not_exists]
exact bound_injection w
lemma unboundList_sorted {n k : } {c : Fin n → 𝓔} {str : WickString c final}
{b1 b2 : Fin k → Fin n} (w : WickContract str b1 b2) :
lemma unboundList_sorted {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final}
{k : } {b1 b2 : Fin k → Fin n} (w : WickContract str b1 b2) :
List.Sorted (fun i j => i < j) w.unboundList :=
List.Pairwise.sublist (List.filter_sublist (List.finRange n)) (List.pairwise_lt_finRange n)
/-- The map giving the fields which are not bound in a contraction. These
/-- The ordered embedding giving the fields which are not bound in a contraction. These
are the fields that will appear in a normal operator in Wick's theorem. -/
def unbound {n k : } {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n}
(w : WickContract str b1 b2) : Fin (n - 2 * k) → Fin n :=
w.unboundList.get ∘ Fin.cast w.unboundList_length.symm
lemma unbound_injective {n k : } {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n}
(w : WickContract str b1 b2) : Function.Injective w.unbound := by
apply Function.Injective.comp
· rw [← List.nodup_iff_injective_get]
exact w.unboundList_nodup
· exact Fin.cast_injective _
lemma unbound_strictMono {n k : } {c : Fin n → 𝓔} {str : WickString c final}
{b1 b2 : Fin k → Fin n} (w : WickContract str b1 b2) : StrictMono w.unbound := by
apply StrictMono.comp
· refine List.Sorted.get_strictMono w.unboundList_sorted
· exact fun ⦃a b⦄ a => a
def unbound {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔}
{no : } {o : Fin no → 𝓔} {str : WickString i c o final}
{k : } {b1 b2 : Fin k → Fin n}
(w : WickContract str b1 b2) : Fin (n - 2 * k) ↪o Fin n where
toFun := w.unboundList.get ∘ Fin.cast w.unboundList_length.symm
inj' := by
apply Function.Injective.comp
· rw [← List.nodup_iff_injective_get]
exact w.unboundList_nodup
· exact Fin.cast_injective _
map_rel_iff' := by
refine fun {a b} => StrictMono.le_iff_le ?_
rw [Function.Embedding.coeFn_mk]
apply StrictMono.comp
· exact List.Sorted.get_strictMono w.unboundList_sorted
· exact fun ⦃a b⦄ a => a
end WickContract

View file

@ -94,20 +94,66 @@ inductive WickStringLast where
open WickStringLast
/-! TODO: This definition should be adapted to include the in and out going fields as inputs. -/
/-- A wick string is a representation of a string of fields from a theory.
E.g. `φ(x1) φ(x2) φ(y) φ(y) φ(y) φ(x3)`. The use of vertices in the Wick string
allows us to identify which fields have the same space-time coordinate. -/
inductive WickString : {n : } → (c : Fin n → 𝓔) → WickStringLast → Type where
| empty : WickString Fin.elim0 incoming
| incoming {n : } {c : Fin n → 𝓔} (w : WickString c incoming) (e : 𝓔) :
WickString (Fin.cons e c) incoming
| endIncoming {n : } {c : Fin n → 𝓔} (w : WickString c incoming) : WickString c vertex
| vertex {n : } {c : Fin n → 𝓔} (w : WickString c vertex) (v : 𝓥) :
WickString (Fin.append (𝓥Edges v) c) vertex
| endVertex {n : } {c : Fin n → 𝓔} (w : WickString c vertex) : WickString c outgoing
| outgoing {n : } {c : Fin n → 𝓔} (w : WickString c outgoing) (e : 𝓔) :
WickString (Fin.cons e c) outgoing
| endOutgoing {n : } {c : Fin n → 𝓔} (w : WickString c outgoing) : WickString c final
allows us to identify which fields have the same space-time coordinate.
Note: Fields are added to `c` from right to left - matching how we would write this on
pen and paper. -/
inductive WickString : {ni : } → (i : Fin ni → 𝓔) → {n : } → (c : Fin n → 𝓔) →
{no : } → (o : Fin no → 𝓔) → WickStringLast → Type where
| empty : WickString Fin.elim0 Fin.elim0 Fin.elim0 incoming
| incoming {n ni no : } {i : Fin ni → 𝓔} {c : Fin n → 𝓔}
{o : Fin no → 𝓔} (w : WickString i c o incoming) (e : 𝓔) :
WickString (Fin.cons e i) (Fin.cons e c) o incoming
| endIncoming {n ni no : } {i : Fin ni → 𝓔} {c : Fin n → 𝓔}
{o : Fin no → 𝓔} (w : WickString i c o incoming) : WickString i c o vertex
| vertex {n ni no : } {i : Fin ni → 𝓔} {c : Fin n → 𝓔}
{o : Fin no → 𝓔} (w : WickString i c o vertex) (v : 𝓥) :
WickString i (Fin.append (𝓥Edges v) c) o vertex
| endVertex {n ni no : } {i : Fin ni → 𝓔} {c : Fin n → 𝓔}
{o : Fin no → 𝓔} (w : WickString i c o vertex) : WickString i c o outgoing
| outgoing {n ni no : } {i : Fin ni → 𝓔} {c : Fin n → 𝓔}
{o : Fin no → 𝓔} (w : WickString i c o outgoing) (e : 𝓔) :
WickString i (Fin.cons e c) (Fin.cons e o) outgoing
| endOutgoing {n ni no : } {i : Fin ni → 𝓔} {c : Fin n → 𝓔}
{o : Fin no → 𝓔} (w : WickString i c o outgoing) : WickString i c o final
namespace WickString
/-- The number of nodes in a Wick string. This is used to help prove termination. -/
def size {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔} {no : } {o : Fin no → 𝓔}
{f : WickStringLast} : WickString i c o f → := fun
| empty => 0
| incoming w e => size w + 1
| endIncoming w => size w + 1
| vertex w v => size w + 1
| endVertex w => size w + 1
| outgoing w e => size w + 1
| endOutgoing w => size w + 1
/-- The number of vertices in a Wick string. -/
def numVertex {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔} {no : } {o : Fin no → 𝓔}
{f : WickStringLast} : WickString i c o f → := fun
| empty => 0
| incoming w e => numVertex w
| endIncoming w => numVertex w
| vertex w v => numVertex w + 1
| endVertex w => numVertex w
| outgoing w e => numVertex w
| endOutgoing w => numVertex w
/-- The vertices present in a Wick string. -/
def vertices {ni : } {i : Fin ni → 𝓔} {n : } {c : Fin n → 𝓔} {no : } {o : Fin no → 𝓔}
{f : WickStringLast} : (w : WickString i c o f) → Fin w.numVertex → 𝓥 := fun
| empty => Fin.elim0
| incoming w e => vertices w
| endIncoming w => vertices w
| vertex w v => Fin.cons v (vertices w)
| endVertex w => vertices w
| outgoing w e => vertices w
| endOutgoing w => vertices w
end WickString
end TwoComplexScalar