feat: Prove commutivity of prod node.

This commit is contained in:
jstoobysmith 2024-10-21 08:02:29 +00:00
parent b0e06a29a3
commit 3035a958a5
3 changed files with 52 additions and 6 deletions

View file

@ -453,7 +453,7 @@ lemma right_unitality (X : OverColor C) : (rightUnitor (objObj' F X)).hom =
LinearEquiv.ofLinear_apply]
rfl
lemma braided' (X Y : OverColor C) : (μ F X Y).hom ≫ (objMap' F) (β_ X Y).hom =
lemma braided' (X Y : OverColor C) : (μ F X Y).hom ≫ (objMap' F) (β_ X Y).hom =
(β_ (objObj' F X) (objObj' F Y)).hom ≫ (μ F Y X).hom := by
ext1
apply HepLean.PiTensorProduct.induction_tmul (fun p q => ?_)
@ -529,7 +529,7 @@ def obj' : BraidedFunctor (OverColor C) (Rep k G) where
left_unitality := left_unitality F
right_unitality := right_unitality F
braided X Y := by
change (objMap' F) (β_ X Y).hom = _
change (objMap' F) (β_ X Y).hom = _
rw [braided F X Y]
congr
simp_all only [IsIso.Iso.inv_hom]
@ -684,6 +684,7 @@ noncomputable def lift : (Discrete C ⥤ Rep k G) ⥤ BraidedFunctor (OverColor
rfl
namespace lift
variable (F F' : Discrete C ⥤ Rep k G) (η : F ⟶ F')
lemma map_tprod (F : Discrete C ⥤ Rep k G) {X Y : OverColor C} (f : X ⟶ Y)
(p : (i : X.left) → F.obj (Discrete.mk <| X.hom i)) :
@ -719,6 +720,12 @@ lemma μIso_inv_tprod (F : Discrete C ⥤ Rep k G) (X Y : OverColor C)
| Sum.inl i => rfl
| Sum.inr i => rfl
@[simp]
lemma inv_μ (X Y : OverColor C) : inv ((lift.obj F).μ X Y) =
(lift.μ F X Y).inv := by
change inv (lift.μ F X Y).hom = _
exact IsIso.Iso.inv_hom (μ F X Y)
end lift
/-- The natural inclusion of `Discrete C` into `OverColor C`. -/
def incl : Discrete C ⥤ OverColor C := Discrete.functor fun c =>

View file

@ -59,7 +59,7 @@ instance : CommRing S.k := S.k_commRing
instance : Group S.G := S.G_group
/-- The lift of the functor `S.F` to a monoidal functor. -/
def F : MonoidalFunctor (OverColor S.C) (Rep S.k S.G) := (OverColor.lift).obj S.FDiscrete
def F : BraidedFunctor (OverColor S.C) (Rep S.k S.G) := (OverColor.lift).obj S.FDiscrete
lemma F_def : F S = (OverColor.lift).obj S.FDiscrete := rfl

View file

@ -8,7 +8,7 @@ import HepLean.Tensors.Tree.Basic
# Commuting products
The results here follow from the properties of Monoidal categories and monoidal functors.
The results here follow from the properties of braided categories and braided functors.
-/
open IndexNotation
@ -22,14 +22,53 @@ namespace TensorTree
variable {S : TensorStruct} {n n2 : }
(c : Fin n → S.C) (c2 : Fin n2 → S.C)
/-- The permutation that arises when moving a commuting terms in a `prod` node.
This permutation is defined using braiding and composition with `finSumFinEquiv`
based-isomorphisms. -/
def braidPerm : OverColor.mk (Sum.elim c2 c ∘ ⇑finSumFinEquiv.symm) ⟶
OverColor.mk (Sum.elim c c2 ∘ ⇑finSumFinEquiv.symm) :=
(equivToIso finSumFinEquiv).inv ≫
(BraidedCategory.braiding (OverColor.mk c2) (OverColor.mk c)).hom
(β_ (OverColor.mk c2) (OverColor.mk c)).hom
≫ (equivToIso finSumFinEquiv).hom
lemma finSumFinEquiv_comp_braidPerm :
(equivToIso finSumFinEquiv).hom ≫ braidPerm c c2 =
(β_ (OverColor.mk c2) (OverColor.mk c)).hom
≫ (equivToIso finSumFinEquiv).hom := by
rw [braidPerm]
simp
/-- The arguments of a `prod` node can be commuted using braiding. -/
theorem prod_comm (t : TensorTree S c) (t2 : TensorTree S c2) :
(prod t t2).tensor = (perm (braidPerm c c2) (prod t2 t)).tensor := by
rw [perm_tensor]
nth_rewrite 2 [prod_tensor]
change _ = (S.F.map (equivToIso finSumFinEquiv).hom ≫ S.F.map (braidPerm c c2)).hom
((S.F.μ (OverColor.mk c2) (OverColor.mk c)).hom (t2.tensor ⊗ₜ[S.k] t.tensor))
rw [← S.F.map_comp]
rw [finSumFinEquiv_comp_braidPerm]
rw [S.F.map_comp]
simp only [BraidedFunctor.braided, Category.assoc, Action.comp_hom,
Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
ModuleCat.coe_comp, Function.comp_apply]
rw [prod_tensor]
apply congrArg
apply congrArg
change _ = (β_ (S.F.obj (OverColor.mk c2)) (S.F.obj (OverColor.mk c))).hom.hom
((inv (lift.μ S.FDiscrete (OverColor.mk c2) (OverColor.mk c)).hom).hom
((lift.μ S.FDiscrete (OverColor.mk c2) (OverColor.mk c)).hom.hom (t2.tensor ⊗ₜ[S.k] t.tensor)))
simp only [Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
lift.objObj'_V_carrier, instMonoidalCategoryStruct_tensorObj_left,
instMonoidalCategoryStruct_tensorObj_hom, mk_hom, IsIso.Iso.inv_hom]
change _ = (β_ (S.F.obj (OverColor.mk c2)) (S.F.obj (OverColor.mk c))).hom.hom
(((lift.μ S.FDiscrete (OverColor.mk c2) (OverColor.mk c)).hom ≫
(lift.μ S.FDiscrete (OverColor.mk c2) (OverColor.mk c)).inv).hom ((t2.tensor ⊗ₜ[S.k] t.tensor)))
simp only [Action.instMonoidalCategory_tensorObj_V, Iso.hom_inv_id, Action.id_hom,
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj, lift.objObj'_V_carrier, mk_hom,
ModuleCat.id_apply]
rfl
sorry
end TensorTree