feat: Prove commutivity of prod node.

This commit is contained in:
jstoobysmith 2024-10-21 08:02:29 +00:00
parent b0e06a29a3
commit 3035a958a5
3 changed files with 52 additions and 6 deletions

View file

@ -453,7 +453,7 @@ lemma right_unitality (X : OverColor C) : (rightUnitor (objObj' F X)).hom =
LinearEquiv.ofLinear_apply]
rfl
lemma braided' (X Y : OverColor C) : (μ F X Y).hom ≫ (objMap' F) (β_ X Y).hom =
lemma braided' (X Y : OverColor C) : (μ F X Y).hom ≫ (objMap' F) (β_ X Y).hom =
(β_ (objObj' F X) (objObj' F Y)).hom ≫ (μ F Y X).hom := by
ext1
apply HepLean.PiTensorProduct.induction_tmul (fun p q => ?_)
@ -529,7 +529,7 @@ def obj' : BraidedFunctor (OverColor C) (Rep k G) where
left_unitality := left_unitality F
right_unitality := right_unitality F
braided X Y := by
change (objMap' F) (β_ X Y).hom = _
change (objMap' F) (β_ X Y).hom = _
rw [braided F X Y]
congr
simp_all only [IsIso.Iso.inv_hom]
@ -684,6 +684,7 @@ noncomputable def lift : (Discrete C ⥤ Rep k G) ⥤ BraidedFunctor (OverColor
rfl
namespace lift
variable (F F' : Discrete C ⥤ Rep k G) (η : F ⟶ F')
lemma map_tprod (F : Discrete C ⥤ Rep k G) {X Y : OverColor C} (f : X ⟶ Y)
(p : (i : X.left) → F.obj (Discrete.mk <| X.hom i)) :
@ -719,6 +720,12 @@ lemma μIso_inv_tprod (F : Discrete C ⥤ Rep k G) (X Y : OverColor C)
| Sum.inl i => rfl
| Sum.inr i => rfl
@[simp]
lemma inv_μ (X Y : OverColor C) : inv ((lift.obj F).μ X Y) =
(lift.μ F X Y).inv := by
change inv (lift.μ F X Y).hom = _
exact IsIso.Iso.inv_hom (μ F X Y)
end lift
/-- The natural inclusion of `Discrete C` into `OverColor C`. -/
def incl : Discrete C ⥤ OverColor C := Discrete.functor fun c =>