refactor: Lint
This commit is contained in:
parent
c64d926e7c
commit
304c3542b5
8 changed files with 10 additions and 29 deletions
|
@ -3,7 +3,6 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|||
Released under Apache 2.0 license.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.SpaceTime.Basic
|
||||
import HepLean.SpaceTime.MinkowskiMetric
|
||||
import Mathlib.Algebra.Lie.Classical
|
||||
/-!
|
||||
|
@ -42,7 +41,7 @@ lemma mem_of_transpose_eta_eq_eta_mul_self {A : Matrix (Fin 1 ⊕ Fin 3) (Fin 1
|
|||
simpa [LieAlgebra.Orthogonal.so', IsSkewAdjoint, IsAdjointPair] using h
|
||||
|
||||
lemma mem_iff {A : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ℝ} :
|
||||
A ∈ lorentzAlgebra ↔ Aᵀ * η = - η * A :=
|
||||
A ∈ lorentzAlgebra ↔ Aᵀ * η = - η * A :=
|
||||
Iff.intro (fun h => transpose_eta ⟨A, h⟩) (fun h => mem_of_transpose_eta_eq_eta_mul_self h)
|
||||
|
||||
lemma mem_iff' (A : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ℝ) :
|
||||
|
|
|
@ -4,7 +4,6 @@ Released under Apache 2.0 license.
|
|||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.SpaceTime.MinkowskiMetric
|
||||
import HepLean.SpaceTime.LorentzVector.AsSelfAdjointMatrix
|
||||
import HepLean.SpaceTime.LorentzVector.NormOne
|
||||
/-!
|
||||
# The Lorentz Group
|
||||
|
@ -24,11 +23,8 @@ identity.
|
|||
|
||||
-/
|
||||
|
||||
|
||||
noncomputable section
|
||||
|
||||
|
||||
open Manifold
|
||||
open Matrix
|
||||
open Complex
|
||||
open ComplexConjugate
|
||||
|
@ -159,7 +155,6 @@ open minkowskiMetric
|
|||
|
||||
variable {Λ Λ' : LorentzGroup d}
|
||||
|
||||
@[simp]
|
||||
lemma coe_inv : (Λ⁻¹).1 = Λ.1⁻¹:= by
|
||||
refine (inv_eq_left_inv ?h).symm
|
||||
exact mem_iff_dual_mul_self.mp Λ.2
|
||||
|
|
|
@ -21,7 +21,6 @@ matrices.
|
|||
noncomputable section
|
||||
|
||||
|
||||
open Manifold
|
||||
open Matrix
|
||||
open Complex
|
||||
open ComplexConjugate
|
||||
|
|
|
@ -15,7 +15,6 @@ We define the give a series of lemmas related to the determinant of the lorentz
|
|||
noncomputable section
|
||||
|
||||
|
||||
open Manifold
|
||||
open Matrix
|
||||
open Complex
|
||||
open ComplexConjugate
|
||||
|
|
|
@ -4,10 +4,7 @@ Released under Apache 2.0 license.
|
|||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import Mathlib.Data.Complex.Exponential
|
||||
import Mathlib.Geometry.Manifold.SmoothManifoldWithCorners
|
||||
import Mathlib.Analysis.InnerProductSpace.PiL2
|
||||
import Mathlib.LinearAlgebra.Matrix.DotProduct
|
||||
import LeanCopilot
|
||||
/-!
|
||||
|
||||
# Lorentz vectors
|
||||
|
@ -62,6 +59,7 @@ def time : ℝ := v (Sum.inl 0)
|
|||
@[simps!]
|
||||
noncomputable def stdBasis : Basis (Fin 1 ⊕ Fin (d)) ℝ (LorentzVector d) := Pi.basisFun ℝ _
|
||||
|
||||
/-- Notation for `stdBasis`. -/
|
||||
scoped[LorentzVector] notation "e" => stdBasis
|
||||
|
||||
lemma stdBasis_apply (μ ν : Fin 1 ⊕ Fin d) : e μ ν = if μ = ν then 1 else 0 := by
|
||||
|
@ -72,12 +70,10 @@ lemma stdBasis_apply (μ ν : Fin 1 ⊕ Fin d) : e μ ν = if μ = ν then 1 els
|
|||
/-- The standard unit time vector. -/
|
||||
noncomputable abbrev timeVec : (LorentzVector d) := e (Sum.inl 0)
|
||||
|
||||
@[simp]
|
||||
lemma timeVec_space : (@timeVec d).space = 0 := by
|
||||
funext i
|
||||
simp only [space, Function.comp_apply, stdBasis_apply, Fin.isValue, ↓reduceIte, PiLp.zero_apply]
|
||||
|
||||
@[simp]
|
||||
lemma timeVec_time: (@timeVec d).time = 1 := by
|
||||
simp only [time, Fin.isValue, stdBasis_apply, ↓reduceIte]
|
||||
|
||||
|
@ -106,19 +102,14 @@ def spaceReflectionLin : LorentzVector d →ₗ[ℝ] LorentzVector d where
|
|||
apply smul_eq_mul
|
||||
· simp [ HSMul.hSMul, SMul.smul]
|
||||
|
||||
|
||||
/-- The reflection of space. -/
|
||||
@[simp]
|
||||
def spaceReflection : LorentzVector d := spaceReflectionLin v
|
||||
|
||||
@[simp]
|
||||
lemma spaceReflection_space : v.spaceReflection.space = - v.space := by
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
lemma spaceReflection_time : v.spaceReflection.time = v.time := by
|
||||
rfl
|
||||
|
||||
|
||||
|
||||
end LorentzVector
|
||||
|
|
|
@ -13,6 +13,7 @@ import HepLean.SpaceTime.MinkowskiMetric
|
|||
|
||||
open minkowskiMetric
|
||||
|
||||
/-- The set of Lorentz vectors with norm 1. -/
|
||||
@[simp]
|
||||
def NormOneLorentzVector (d : ℕ) : Set (LorentzVector d) :=
|
||||
fun x => ⟪x, x⟫ₘ = 1
|
||||
|
@ -105,11 +106,8 @@ lemma mem_iff : v ∈ FuturePointing d ↔ 0 < v.1.time := by
|
|||
rfl
|
||||
|
||||
lemma mem_iff_time_nonneg : v ∈ FuturePointing d ↔ 0 ≤ v.1.time := by
|
||||
refine Iff.intro (fun h => ?_) (fun h => ?_)
|
||||
exact le_of_lt ((mem_iff v).mp h)
|
||||
have h1 := (mem_iff v).mp
|
||||
simp at h1
|
||||
rw [@time_nonneg_iff] at h
|
||||
refine Iff.intro (fun h => le_of_lt h) (fun h => ?_)
|
||||
rw [time_nonneg_iff] at h
|
||||
rw [mem_iff]
|
||||
linarith
|
||||
|
||||
|
|
|
@ -5,7 +5,6 @@ Authors: Joseph Tooby-Smith
|
|||
-/
|
||||
import HepLean.SpaceTime.LorentzVector.Basic
|
||||
import Mathlib.Algebra.Lie.Classical
|
||||
import Mathlib.LinearAlgebra.QuadraticForm.Basic
|
||||
/-!
|
||||
|
||||
# The Minkowski Metric
|
||||
|
@ -33,6 +32,7 @@ namespace minkowskiMatrix
|
|||
|
||||
variable {d : ℕ}
|
||||
|
||||
/-- Notation for `minkowskiMatrix`. -/
|
||||
scoped[minkowskiMatrix] notation "η" => minkowskiMatrix
|
||||
|
||||
@[simp]
|
||||
|
@ -116,6 +116,7 @@ open LorentzVector
|
|||
variable {d : ℕ}
|
||||
variable (v w : LorentzVector d)
|
||||
|
||||
/-- Notation for `minkowskiMetric`. -/
|
||||
scoped[minkowskiMetric] notation "⟪" v "," w "⟫ₘ" => minkowskiMetric v w
|
||||
/-!
|
||||
|
||||
|
@ -318,17 +319,14 @@ lemma basis_left (μ : Fin 1 ⊕ Fin d) : ⟪e μ, v⟫ₘ = η μ μ * v μ :
|
|||
simp [stdBasis_apply, minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal]
|
||||
· simp [stdBasis_apply, minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal]
|
||||
|
||||
@[simp]
|
||||
lemma on_timeVec : ⟪timeVec, @timeVec d⟫ₘ = 1 := by
|
||||
simp only [timeVec, Fin.isValue, basis_left, minkowskiMatrix,
|
||||
LieAlgebra.Orthogonal.indefiniteDiagonal, diagonal_apply_eq, Sum.elim_inl, stdBasis_apply,
|
||||
↓reduceIte, mul_one]
|
||||
|
||||
@[simp]
|
||||
lemma on_basis_mulVec (μ ν : Fin 1 ⊕ Fin d) : ⟪e μ, Λ *ᵥ e ν⟫ₘ = η μ μ * Λ μ ν := by
|
||||
simp [basis_left, mulVec, dotProduct, stdBasis_apply]
|
||||
|
||||
@[simp]
|
||||
lemma on_basis (μ ν : Fin 1 ⊕ Fin d) : ⟪e μ, e ν⟫ₘ = η μ ν := by
|
||||
rw [basis_left, stdBasis_apply]
|
||||
by_cases h : μ = ν
|
||||
|
|
|
@ -5,6 +5,7 @@ Authors: Joseph Tooby-Smith
|
|||
-/
|
||||
import HepLean.SpaceTime.LorentzGroup.Basic
|
||||
import Mathlib.RepresentationTheory.Basic
|
||||
import HepLean.SpaceTime.LorentzVector.AsSelfAdjointMatrix
|
||||
/-!
|
||||
# The group SL(2, ℂ) and it's relation to the Lorentz group
|
||||
|
||||
|
@ -86,7 +87,8 @@ In the next section we will restrict this homomorphism to the restricted Lorentz
|
|||
|
||||
lemma iff_det_selfAdjoint (Λ : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ℝ): Λ ∈ LorentzGroup 3 ↔
|
||||
∀ (x : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)),
|
||||
det ((toSelfAdjointMatrix ∘ toLin LorentzVector.stdBasis LorentzVector.stdBasis Λ ∘ toSelfAdjointMatrix.symm) x).1
|
||||
det ((toSelfAdjointMatrix ∘
|
||||
toLin LorentzVector.stdBasis LorentzVector.stdBasis Λ ∘ toSelfAdjointMatrix.symm) x).1
|
||||
= det x.1 := by
|
||||
rw [LorentzGroup.mem_iff_norm]
|
||||
apply Iff.intro
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue