refactor: Lint
This commit is contained in:
parent
c64d926e7c
commit
304c3542b5
8 changed files with 10 additions and 29 deletions
|
@ -3,7 +3,6 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|||
Released under Apache 2.0 license.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.SpaceTime.Basic
|
||||
import HepLean.SpaceTime.MinkowskiMetric
|
||||
import Mathlib.Algebra.Lie.Classical
|
||||
/-!
|
||||
|
@ -42,7 +41,7 @@ lemma mem_of_transpose_eta_eq_eta_mul_self {A : Matrix (Fin 1 ⊕ Fin 3) (Fin 1
|
|||
simpa [LieAlgebra.Orthogonal.so', IsSkewAdjoint, IsAdjointPair] using h
|
||||
|
||||
lemma mem_iff {A : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ℝ} :
|
||||
A ∈ lorentzAlgebra ↔ Aᵀ * η = - η * A :=
|
||||
A ∈ lorentzAlgebra ↔ Aᵀ * η = - η * A :=
|
||||
Iff.intro (fun h => transpose_eta ⟨A, h⟩) (fun h => mem_of_transpose_eta_eq_eta_mul_self h)
|
||||
|
||||
lemma mem_iff' (A : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ℝ) :
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue