refactor: Lint

This commit is contained in:
jstoobysmith 2024-07-02 10:26:21 -04:00
parent c64d926e7c
commit 304c3542b5
8 changed files with 10 additions and 29 deletions

View file

@ -3,7 +3,6 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license. Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith Authors: Joseph Tooby-Smith
-/ -/
import HepLean.SpaceTime.Basic
import HepLean.SpaceTime.MinkowskiMetric import HepLean.SpaceTime.MinkowskiMetric
import Mathlib.Algebra.Lie.Classical import Mathlib.Algebra.Lie.Classical
/-! /-!
@ -42,7 +41,7 @@ lemma mem_of_transpose_eta_eq_eta_mul_self {A : Matrix (Fin 1 ⊕ Fin 3) (Fin 1
simpa [LieAlgebra.Orthogonal.so', IsSkewAdjoint, IsAdjointPair] using h simpa [LieAlgebra.Orthogonal.so', IsSkewAdjoint, IsAdjointPair] using h
lemma mem_iff {A : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) } : lemma mem_iff {A : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) } :
A ∈ lorentzAlgebra ↔ Aᵀ * η = - η * A := A ∈ lorentzAlgebra ↔ Aᵀ * η = - η * A :=
Iff.intro (fun h => transpose_eta ⟨A, h⟩) (fun h => mem_of_transpose_eta_eq_eta_mul_self h) Iff.intro (fun h => transpose_eta ⟨A, h⟩) (fun h => mem_of_transpose_eta_eq_eta_mul_self h)
lemma mem_iff' (A : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ) : lemma mem_iff' (A : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ) :

View file

@ -4,7 +4,6 @@ Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith Authors: Joseph Tooby-Smith
-/ -/
import HepLean.SpaceTime.MinkowskiMetric import HepLean.SpaceTime.MinkowskiMetric
import HepLean.SpaceTime.LorentzVector.AsSelfAdjointMatrix
import HepLean.SpaceTime.LorentzVector.NormOne import HepLean.SpaceTime.LorentzVector.NormOne
/-! /-!
# The Lorentz Group # The Lorentz Group
@ -24,11 +23,8 @@ identity.
-/ -/
noncomputable section noncomputable section
open Manifold
open Matrix open Matrix
open Complex open Complex
open ComplexConjugate open ComplexConjugate
@ -159,7 +155,6 @@ open minkowskiMetric
variable {Λ Λ' : LorentzGroup d} variable {Λ Λ' : LorentzGroup d}
@[simp]
lemma coe_inv : (Λ⁻¹).1 = Λ.1⁻¹:= by lemma coe_inv : (Λ⁻¹).1 = Λ.1⁻¹:= by
refine (inv_eq_left_inv ?h).symm refine (inv_eq_left_inv ?h).symm
exact mem_iff_dual_mul_self.mp Λ.2 exact mem_iff_dual_mul_self.mp Λ.2

View file

@ -21,7 +21,6 @@ matrices.
noncomputable section noncomputable section
open Manifold
open Matrix open Matrix
open Complex open Complex
open ComplexConjugate open ComplexConjugate

View file

@ -15,7 +15,6 @@ We define the give a series of lemmas related to the determinant of the lorentz
noncomputable section noncomputable section
open Manifold
open Matrix open Matrix
open Complex open Complex
open ComplexConjugate open ComplexConjugate

View file

@ -4,10 +4,7 @@ Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith Authors: Joseph Tooby-Smith
-/ -/
import Mathlib.Data.Complex.Exponential import Mathlib.Data.Complex.Exponential
import Mathlib.Geometry.Manifold.SmoothManifoldWithCorners
import Mathlib.Analysis.InnerProductSpace.PiL2 import Mathlib.Analysis.InnerProductSpace.PiL2
import Mathlib.LinearAlgebra.Matrix.DotProduct
import LeanCopilot
/-! /-!
# Lorentz vectors # Lorentz vectors
@ -62,6 +59,7 @@ def time : := v (Sum.inl 0)
@[simps!] @[simps!]
noncomputable def stdBasis : Basis (Fin 1 ⊕ Fin (d)) (LorentzVector d) := Pi.basisFun _ noncomputable def stdBasis : Basis (Fin 1 ⊕ Fin (d)) (LorentzVector d) := Pi.basisFun _
/-- Notation for `stdBasis`. -/
scoped[LorentzVector] notation "e" => stdBasis scoped[LorentzVector] notation "e" => stdBasis
lemma stdBasis_apply (μ ν : Fin 1 ⊕ Fin d) : e μ ν = if μ = ν then 1 else 0 := by lemma stdBasis_apply (μ ν : Fin 1 ⊕ Fin d) : e μ ν = if μ = ν then 1 else 0 := by
@ -72,12 +70,10 @@ lemma stdBasis_apply (μ ν : Fin 1 ⊕ Fin d) : e μ ν = if μ = ν then 1 els
/-- The standard unit time vector. -/ /-- The standard unit time vector. -/
noncomputable abbrev timeVec : (LorentzVector d) := e (Sum.inl 0) noncomputable abbrev timeVec : (LorentzVector d) := e (Sum.inl 0)
@[simp]
lemma timeVec_space : (@timeVec d).space = 0 := by lemma timeVec_space : (@timeVec d).space = 0 := by
funext i funext i
simp only [space, Function.comp_apply, stdBasis_apply, Fin.isValue, ↓reduceIte, PiLp.zero_apply] simp only [space, Function.comp_apply, stdBasis_apply, Fin.isValue, ↓reduceIte, PiLp.zero_apply]
@[simp]
lemma timeVec_time: (@timeVec d).time = 1 := by lemma timeVec_time: (@timeVec d).time = 1 := by
simp only [time, Fin.isValue, stdBasis_apply, ↓reduceIte] simp only [time, Fin.isValue, stdBasis_apply, ↓reduceIte]
@ -106,19 +102,14 @@ def spaceReflectionLin : LorentzVector d →ₗ[] LorentzVector d where
apply smul_eq_mul apply smul_eq_mul
· simp [ HSMul.hSMul, SMul.smul] · simp [ HSMul.hSMul, SMul.smul]
/-- The reflection of space. -/ /-- The reflection of space. -/
@[simp] @[simp]
def spaceReflection : LorentzVector d := spaceReflectionLin v def spaceReflection : LorentzVector d := spaceReflectionLin v
@[simp]
lemma spaceReflection_space : v.spaceReflection.space = - v.space := by lemma spaceReflection_space : v.spaceReflection.space = - v.space := by
rfl rfl
@[simp]
lemma spaceReflection_time : v.spaceReflection.time = v.time := by lemma spaceReflection_time : v.spaceReflection.time = v.time := by
rfl rfl
end LorentzVector end LorentzVector

View file

@ -13,6 +13,7 @@ import HepLean.SpaceTime.MinkowskiMetric
open minkowskiMetric open minkowskiMetric
/-- The set of Lorentz vectors with norm 1. -/
@[simp] @[simp]
def NormOneLorentzVector (d : ) : Set (LorentzVector d) := def NormOneLorentzVector (d : ) : Set (LorentzVector d) :=
fun x => ⟪x, x⟫ₘ = 1 fun x => ⟪x, x⟫ₘ = 1
@ -105,11 +106,8 @@ lemma mem_iff : v ∈ FuturePointing d ↔ 0 < v.1.time := by
rfl rfl
lemma mem_iff_time_nonneg : v ∈ FuturePointing d ↔ 0 ≤ v.1.time := by lemma mem_iff_time_nonneg : v ∈ FuturePointing d ↔ 0 ≤ v.1.time := by
refine Iff.intro (fun h => ?_) (fun h => ?_) refine Iff.intro (fun h => le_of_lt h) (fun h => ?_)
exact le_of_lt ((mem_iff v).mp h) rw [time_nonneg_iff] at h
have h1 := (mem_iff v).mp
simp at h1
rw [@time_nonneg_iff] at h
rw [mem_iff] rw [mem_iff]
linarith linarith

View file

@ -5,7 +5,6 @@ Authors: Joseph Tooby-Smith
-/ -/
import HepLean.SpaceTime.LorentzVector.Basic import HepLean.SpaceTime.LorentzVector.Basic
import Mathlib.Algebra.Lie.Classical import Mathlib.Algebra.Lie.Classical
import Mathlib.LinearAlgebra.QuadraticForm.Basic
/-! /-!
# The Minkowski Metric # The Minkowski Metric
@ -33,6 +32,7 @@ namespace minkowskiMatrix
variable {d : } variable {d : }
/-- Notation for `minkowskiMatrix`. -/
scoped[minkowskiMatrix] notation "η" => minkowskiMatrix scoped[minkowskiMatrix] notation "η" => minkowskiMatrix
@[simp] @[simp]
@ -116,6 +116,7 @@ open LorentzVector
variable {d : } variable {d : }
variable (v w : LorentzVector d) variable (v w : LorentzVector d)
/-- Notation for `minkowskiMetric`. -/
scoped[minkowskiMetric] notation "⟪" v "," w "⟫ₘ" => minkowskiMetric v w scoped[minkowskiMetric] notation "⟪" v "," w "⟫ₘ" => minkowskiMetric v w
/-! /-!
@ -318,17 +319,14 @@ lemma basis_left (μ : Fin 1 ⊕ Fin d) : ⟪e μ, v⟫ₘ = η μ μ * v μ :
simp [stdBasis_apply, minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal] simp [stdBasis_apply, minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal]
· simp [stdBasis_apply, minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal] · simp [stdBasis_apply, minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal]
@[simp]
lemma on_timeVec : ⟪timeVec, @timeVec d⟫ₘ = 1 := by lemma on_timeVec : ⟪timeVec, @timeVec d⟫ₘ = 1 := by
simp only [timeVec, Fin.isValue, basis_left, minkowskiMatrix, simp only [timeVec, Fin.isValue, basis_left, minkowskiMatrix,
LieAlgebra.Orthogonal.indefiniteDiagonal, diagonal_apply_eq, Sum.elim_inl, stdBasis_apply, LieAlgebra.Orthogonal.indefiniteDiagonal, diagonal_apply_eq, Sum.elim_inl, stdBasis_apply,
↓reduceIte, mul_one] ↓reduceIte, mul_one]
@[simp]
lemma on_basis_mulVec (μ ν : Fin 1 ⊕ Fin d) : ⟪e μ, Λ *ᵥ e ν⟫ₘ = η μ μ * Λ μ ν := by lemma on_basis_mulVec (μ ν : Fin 1 ⊕ Fin d) : ⟪e μ, Λ *ᵥ e ν⟫ₘ = η μ μ * Λ μ ν := by
simp [basis_left, mulVec, dotProduct, stdBasis_apply] simp [basis_left, mulVec, dotProduct, stdBasis_apply]
@[simp]
lemma on_basis (μ ν : Fin 1 ⊕ Fin d) : ⟪e μ, e ν⟫ₘ = η μ ν := by lemma on_basis (μ ν : Fin 1 ⊕ Fin d) : ⟪e μ, e ν⟫ₘ = η μ ν := by
rw [basis_left, stdBasis_apply] rw [basis_left, stdBasis_apply]
by_cases h : μ = ν by_cases h : μ = ν

View file

@ -5,6 +5,7 @@ Authors: Joseph Tooby-Smith
-/ -/
import HepLean.SpaceTime.LorentzGroup.Basic import HepLean.SpaceTime.LorentzGroup.Basic
import Mathlib.RepresentationTheory.Basic import Mathlib.RepresentationTheory.Basic
import HepLean.SpaceTime.LorentzVector.AsSelfAdjointMatrix
/-! /-!
# The group SL(2, ) and it's relation to the Lorentz group # The group SL(2, ) and it's relation to the Lorentz group
@ -86,7 +87,8 @@ In the next section we will restrict this homomorphism to the restricted Lorentz
lemma iff_det_selfAdjoint (Λ : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ): Λ ∈ LorentzGroup 3 ↔ lemma iff_det_selfAdjoint (Λ : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ): Λ ∈ LorentzGroup 3 ↔
∀ (x : selfAdjoint (Matrix (Fin 2) (Fin 2) )), ∀ (x : selfAdjoint (Matrix (Fin 2) (Fin 2) )),
det ((toSelfAdjointMatrix ∘ toLin LorentzVector.stdBasis LorentzVector.stdBasis Λ ∘ toSelfAdjointMatrix.symm) x).1 det ((toSelfAdjointMatrix ∘
toLin LorentzVector.stdBasis LorentzVector.stdBasis Λ ∘ toSelfAdjointMatrix.symm) x).1
= det x.1 := by = det x.1 := by
rw [LorentzGroup.mem_iff_norm] rw [LorentzGroup.mem_iff_norm]
apply Iff.intro apply Iff.intro