refactor: lint

This commit is contained in:
jstoobysmith 2024-04-18 11:20:15 -04:00
parent 07e2b05808
commit 3218b93c27
2 changed files with 61 additions and 58 deletions

View file

@ -51,7 +51,7 @@ def δ!₃ : Fin (2 * n.succ) := (Fin.cast (n_cond₂ n) (Fin.castAdd ((n + n) +
def δ!₄ : Fin (2 * n.succ) := (Fin.cast (n_cond₂ n) (Fin.natAdd 1 (Fin.natAdd (n + n) 0)))
lemma ext_δ (S T : Fin (2 * n.succ) → ) (h1 : ∀ i, S (δ₁ i) = T (δ₁ i))
(h2 : ∀ i, S (δ₂ i) = T (δ₂ i)) : S = T := by
(h2 : ∀ i, S (δ₂ i) = T (δ₂ i)) : S = T := by
funext i
by_cases hi : i.val < n.succ
let j : Fin n.succ := ⟨i, hi⟩
@ -73,7 +73,7 @@ lemma sum_δ₁_δ₂ (S : Fin (2 * n.succ) → ) :
have h1 : ∑ i, S i = ∑ i : Fin (n.succ + n.succ), S (Fin.cast (split_equal n.succ) i) := by
rw [Finset.sum_equiv (Fin.castIso (split_equal n.succ)).symm.toEquiv]
intro i
simp
simp only [mem_univ, Fin.symm_castIso, RelIso.coe_fn_toEquiv, Fin.castIso_apply]
intro i
simp
rw [h1]
@ -85,7 +85,7 @@ lemma sum_δ₁_δ₂' (S : Fin (2 * n.succ) → ) :
have h1 : ∑ i, S i = ∑ i : Fin (n.succ + n.succ), S (Fin.cast (split_equal n.succ) i) := by
rw [Finset.sum_equiv (Fin.castIso (split_equal n.succ)).symm.toEquiv]
intro i
simp
simp only [mem_univ, Fin.symm_castIso, RelIso.coe_fn_toEquiv, Fin.castIso_apply]
intro i
simp
rw [h1]
@ -97,12 +97,12 @@ lemma sum_δ!₁_δ!₂ (S : Fin (2 * n.succ) → ) :
have h1 : ∑ i, S i = ∑ i : Fin (1 + ((n + n) + 1)), S (Fin.cast (n_cond₂ n) i) := by
rw [Finset.sum_equiv (Fin.castIso (n_cond₂ n)).symm.toEquiv]
intro i
simp
simp only [mem_univ, Fin.symm_castIso, RelIso.coe_fn_toEquiv, Fin.castIso_apply]
intro i
simp
rw [h1]
rw [Fin.sum_univ_add, Fin.sum_univ_add, Fin.sum_univ_add, Finset.sum_add_distrib]
simp
simp only [univ_unique, Fin.default_eq_zero, Fin.isValue, sum_singleton, Function.comp_apply]
repeat rw [Rat.add_assoc]
apply congrArg
rw [Rat.add_comm]
@ -122,12 +122,12 @@ lemma δ!₄_δ₂Last: @δ!₄ n = δ₂ (Fin.last n) := by
lemma δ!₁_δ₁ (j : Fin n) : δ!₁ j = δ₁ j.succ := by
rw [Fin.ext_iff, δ₁, δ!₁]
simp
simp only [Fin.coe_cast, Fin.coe_natAdd, Fin.coe_castAdd, Fin.val_succ]
ring
lemma δ!₂_δ₂ (j : Fin n) : δ!₂ j = δ₂ j.castSucc := by
rw [Fin.ext_iff, δ₂, δ!₂]
simp
simp only [Fin.coe_cast, Fin.coe_natAdd, Fin.coe_castAdd, Fin.coe_castSucc]
ring_nf
rw [Nat.succ_eq_add_one]
ring
@ -281,13 +281,13 @@ lemma basis!_on_δ!₄ (j : Fin n) : basis!AsCharges j δ!₄ = 0 := by
lemma basis_linearACC (j : Fin n.succ) : (accGrav (2 * n.succ)) (basisAsCharges j) = 0 := by
rw [accGrav]
simp
simp only [LinearMap.coe_mk, AddHom.coe_mk]
rw [sum_δ₁_δ₂]
simp [basis_δ₂_eq_minus_δ₁]
lemma basis!_linearACC (j : Fin n) : (accGrav (2 * n.succ)) (basis!AsCharges j) = 0 := by
rw [accGrav]
simp
simp only [LinearMap.coe_mk, AddHom.coe_mk]
rw [sum_δ!₁_δ!₂, basis!_on_δ!₃, basis!_on_δ!₄]
simp [basis!_δ!₂_eq_minus_δ!₁]
@ -303,7 +303,8 @@ lemma basis!_accCube (j : Fin n) :
accCube (2 * n.succ) (basis!AsCharges j) = 0 := by
rw [accCube_explicit, sum_δ!₁_δ!₂]
rw [basis!_on_δ!₄, basis!_on_δ!₃]
simp
simp only [ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, zero_pow, add_zero, Function.comp_apply,
zero_add]
apply Finset.sum_eq_zero
intro i _
simp [basis!_δ!₂_eq_minus_δ!₁]
@ -369,7 +370,7 @@ lemma P_δ₁ (f : Fin n.succ → ) (j : Fin n.succ) : P f (δ₁ j) = f j :=
simp [HSMul.hSMul, SMul.smul]
rw [Finset.sum_eq_single j]
rw [basis_on_δ₁_self]
simp
simp only [mul_one]
intro k _ hkj
rw [basis_on_δ₁_other hkj]
simp only [mul_zero]
@ -380,15 +381,16 @@ lemma P!_δ!₁ (f : Fin n → ) (j : Fin n) : P! f (δ!₁ j) = f j := by
simp [HSMul.hSMul, SMul.smul]
rw [Finset.sum_eq_single j]
rw [basis!_on_δ!₁_self]
simp
simp only [mul_one]
intro k _ hkj
rw [basis!_on_δ!₁_other hkj]
simp only [mul_zero]
simp only [mem_univ, not_true_eq_false, _root_.mul_eq_zero, IsEmpty.forall_iff]
lemma Pa_δ!₁ (f : Fin n.succ → ) (g : Fin n → ) (j : Fin n) : Pa f g (δ!₁ j) = f j.succ + g j := by
lemma Pa_δ!₁ (f : Fin n.succ → ) (g : Fin n → ) (j : Fin n) :
Pa f g (δ!₁ j) = f j.succ + g j := by
rw [Pa]
simp
simp only [ACCSystemCharges.chargesAddCommMonoid_add]
rw [P!_δ!₁, δ!₁_δ₁, P_δ₁]
lemma P_δ₂ (f : Fin n.succ → ) (j : Fin n.succ) : P f (δ₂ j) = - f j := by
@ -396,10 +398,10 @@ lemma P_δ₂ (f : Fin n.succ → ) (j : Fin n.succ) : P f (δ₂ j) = - f j
simp [HSMul.hSMul, SMul.smul]
rw [Finset.sum_eq_single j]
rw [basis_on_δ₂_self]
simp
simp only [mul_neg, mul_one]
intro k _ hkj
rw [basis_on_δ₂_other hkj]
simp
simp only [mul_zero]
simp
lemma P!_δ!₂ (f : Fin n → ) (j : Fin n) : P! f (δ!₂ j) = - f j := by
@ -407,16 +409,16 @@ lemma P!_δ!₂ (f : Fin n → ) (j : Fin n) : P! f (δ!₂ j) = - f j := by
simp [HSMul.hSMul, SMul.smul]
rw [Finset.sum_eq_single j]
rw [basis!_on_δ!₂_self]
simp
simp only [mul_neg, mul_one]
intro k _ hkj
rw [basis!_on_δ!₂_other hkj]
simp
simp only [mul_zero]
simp
lemma Pa_δ!₂ (f : Fin n.succ → ) (g : Fin n → ) (j : Fin n) :
Pa f g (δ!₂ j) = - f j.castSucc - g j := by
rw [Pa]
simp
simp only [ACCSystemCharges.chargesAddCommMonoid_add]
rw [P!_δ!₂, δ!₂_δ₂, P_δ₂]
ring
@ -426,7 +428,7 @@ lemma P!_δ!₃ (f : Fin n → ) : P! f (δ!₃) = 0 := by
lemma Pa_δ!₃ (f : Fin n.succ → ) (g : Fin n → ) : Pa f g (δ!₃) = f 0 := by
rw [Pa]
simp
simp only [ACCSystemCharges.chargesAddCommMonoid_add]
rw [P!_δ!₃, δ!₃_δ₁0, P_δ₁]
simp
@ -436,18 +438,18 @@ lemma P!_δ!₄ (f : Fin n → ) : P! f (δ!₄) = 0 := by
lemma Pa_δ!₄ (f : Fin n.succ → ) (g : Fin n → ) : Pa f g (δ!₄) = - f (Fin.last n) := by
rw [Pa]
simp
simp only [ACCSystemCharges.chargesAddCommMonoid_add]
rw [P!_δ!₄, δ!₄_δ₂Last, P_δ₂]
simp
lemma P_δ₁_δ₂ (f : Fin n.succ → ) : P f ∘ δ₂ = - P f ∘ δ₁ := by
funext j
simp
simp only [PureU1_numberCharges, Function.comp_apply, Pi.neg_apply]
rw [P_δ₁, P_δ₂]
lemma P_linearACC (f : Fin n.succ → ) : (accGrav (2 * n.succ)) (P f) = 0 := by
rw [accGrav]
simp
simp only [LinearMap.coe_mk, AddHom.coe_mk]
rw [sum_δ₁_δ₂]
simp [P_δ₂, P_δ₁]
@ -460,7 +462,8 @@ lemma P_accCube (f : Fin n.succ → ) : accCube (2 * n.succ) (P f) = 0 := by
lemma P!_accCube (f : Fin n → ) : accCube (2 * n.succ) (P! f) = 0 := by
rw [accCube_explicit, sum_δ!₁_δ!₂, P!_δ!₃, P!_δ!₄]
simp
simp only [ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, zero_pow, add_zero, Function.comp_apply,
zero_add]
apply Finset.sum_eq_zero
intro i _
simp [P!_δ!₁, P!_δ!₂]
@ -471,14 +474,14 @@ lemma P_P_P!_accCube (g : Fin n.succ → ) (j : Fin n) :
= g (j.succ) ^ 2 - g (j.castSucc) ^ 2 := by
simp [accCubeTriLinSymm]
rw [sum_δ!₁_δ!₂, basis!_on_δ!₃, basis!_on_δ!₄]
simp
simp only [mul_zero, add_zero, Function.comp_apply, zero_add]
rw [Finset.sum_eq_single j, basis!_on_δ!₁_self, basis!_on_δ!₂_self]
simp [δ!₁_δ₁, δ!₂_δ₂]
rw [P_δ₁, P_δ₂]
ring
intro k _ hkj
erw [basis!_on_δ!₁_other hkj.symm, basis!_on_δ!₂_other hkj.symm]
simp
simp only [mul_zero, add_zero]
simp
lemma P_P!_P!_accCube (g : Fin n → ) (j : Fin n.succ) :
@ -486,13 +489,13 @@ lemma P_P!_P!_accCube (g : Fin n → ) (j : Fin n.succ) :
= (P! g (δ₁ j))^2 - (P! g (δ₂ j))^2 := by
simp [accCubeTriLinSymm]
rw [sum_δ₁_δ₂]
simp
simp only [Function.comp_apply]
rw [Finset.sum_eq_single j, basis_on_δ₁_self, basis_on_δ₂_self]
simp [δ!₁_δ₁, δ!₂_δ₂]
ring
intro k _ hkj
erw [basis_on_δ₁_other hkj.symm, basis_on_δ₂_other hkj.symm]
simp
simp only [mul_zero, add_zero]
simp
lemma P_zero (f : Fin n.succ → ) (h : P f = 0) : ∀ i, f i = 0 := by
@ -642,7 +645,7 @@ lemma join_ext (g g' : Fin n.succ → ) (f f' : Fin n → ) :
rw [h.left, h.right]
lemma join_Pa (g g' : Fin n.succ → ) (f f' : Fin n → ) :
Pa' (join g f) = Pa' (join g' f') ↔ Pa g f = Pa g' f' := by
Pa' (join g f) = Pa' (join g' f') ↔ Pa g f = Pa g' f' := by
apply Iff.intro
intro h
rw [Pa'_eq] at h
@ -664,7 +667,7 @@ lemma Pa_eq (g g' : Fin n.succ → ) (f f' : Fin n → ) :
lemma basisa_card : Fintype.card ((Fin n.succ) ⊕ (Fin n)) =
FiniteDimensional.finrank (PureU1 (2 * n.succ)).LinSols := by
erw [BasisLinear.finrank_AnomalyFreeLinear]
simp
simp only [Fintype.card_sum, Fintype.card_fin, mul_eq]
omega
/-- The basis formed out of our basisa vectors. -/
@ -674,7 +677,7 @@ noncomputable def basisaAsBasis :
lemma span_basis (S : (PureU1 (2 * n.succ)).LinSols) :
∃ (g : Fin n.succ → ) (f : Fin n → ), S.val = P g + P! f := by
∃ (g : Fin n.succ → ) (f : Fin n → ), S.val = P g + P! f := by
have h := (mem_span_range_iff_exists_fun ).mp (Basis.mem_span basisaAsBasis S)
obtain ⟨f, hf⟩ := h
simp [basisaAsBasis] at hf
@ -717,7 +720,7 @@ lemma span_basis_swap! {S : (PureU1 (2 * n.succ)).LinSols} (j : Fin n)
use f'
change P! f' = _ at hf'
erw [hf']
simp
simp only [and_self, and_true]
change S'.val = P g + (P! f + _)
rw [← add_assoc, ← h]
apply swap!_as_add at hS

View file

@ -117,12 +117,12 @@ lemma sum_δ (S : Fin (2 * n + 1) → ) :
have h1 : ∑ i, S i = ∑ i : Fin (n + 1 + n), S (Fin.cast (split_odd n) i) := by
rw [Finset.sum_equiv (Fin.castIso (split_odd n)).symm.toEquiv]
intro i
simp
simp only [mem_univ, Fin.symm_castIso, RelIso.coe_fn_toEquiv, Fin.castIso_apply]
intro i
simp
rw [h1]
rw [Fin.sum_univ_add, Fin.sum_univ_add]
simp
simp only [univ_unique, Fin.default_eq_zero, Fin.isValue, sum_singleton, Function.comp_apply]
nth_rewrite 2 [add_comm]
rw [add_assoc]
rw [Finset.sum_add_distrib]
@ -133,12 +133,12 @@ lemma sum_δ! (S : Fin (2 * n + 1) → ) :
have h1 : ∑ i, S i = ∑ i : Fin ((1+n)+n), S (Fin.cast (split_odd! n) i) := by
rw [Finset.sum_equiv (Fin.castIso (split_odd! n)).symm.toEquiv]
intro i
simp
simp only [mem_univ, Fin.symm_castIso, RelIso.coe_fn_toEquiv, Fin.castIso_apply]
intro i
simp
rw [h1]
rw [Fin.sum_univ_add, Fin.sum_univ_add]
simp
simp only [univ_unique, Fin.default_eq_zero, Fin.isValue, sum_singleton, Function.comp_apply]
rw [add_assoc]
rw [Finset.sum_add_distrib]
rfl
@ -293,13 +293,13 @@ lemma basis!_on_δ!₃ (j : Fin n) : basis!AsCharges j δ!₃ = 0 := by
lemma basis_linearACC (j : Fin n) : (accGrav (2 * n + 1)) (basisAsCharges j) = 0 := by
rw [accGrav]
simp
simp only [LinearMap.coe_mk, AddHom.coe_mk]
erw [sum_δ]
simp [basis_δ₂_eq_minus_δ₁, basis_on_δ₃]
lemma basis!_linearACC (j : Fin n) : (accGrav (2 * n + 1)) (basis!AsCharges j) = 0 := by
rw [accGrav]
simp
simp only [LinearMap.coe_mk, AddHom.coe_mk]
rw [sum_δ!, basis!_on_δ!₃]
simp [basis!_δ!₂_eq_minus_δ!₁]
@ -364,7 +364,7 @@ lemma P_δ₁ (f : Fin n → ) (j : Fin n) : P f (δ₁ j) = f j := by
simp [HSMul.hSMul, SMul.smul]
rw [Finset.sum_eq_single j]
rw [basis_on_δ₁_self]
simp
simp only [mul_one]
intro k _ hkj
rw [basis_on_δ₁_other hkj]
simp only [mul_zero]
@ -375,7 +375,7 @@ lemma P!_δ!₁ (f : Fin n → ) (j : Fin n) : P! f (δ!₁ j) = f j := by
simp [HSMul.hSMul, SMul.smul]
rw [Finset.sum_eq_single j]
rw [basis!_on_δ!₁_self]
simp
simp only [mul_one]
intro k _ hkj
rw [basis!_on_δ!₁_other hkj]
simp only [mul_zero]
@ -386,10 +386,10 @@ lemma P_δ₂ (f : Fin n → ) (j : Fin n) : P f (δ₂ j) = - f j := by
simp [HSMul.hSMul, SMul.smul]
rw [Finset.sum_eq_single j]
rw [basis_on_δ₂_self]
simp
simp only [mul_neg, mul_one]
intro k _ hkj
rw [basis_on_δ₂_other hkj]
simp
simp only [mul_zero]
simp
lemma P!_δ!₂ (f : Fin n → ) (j : Fin n) : P! f (δ!₂ j) = - f j := by
@ -397,10 +397,10 @@ lemma P!_δ!₂ (f : Fin n → ) (j : Fin n) : P! f (δ!₂ j) = - f j := by
simp [HSMul.hSMul, SMul.smul]
rw [Finset.sum_eq_single j]
rw [basis!_on_δ!₂_self]
simp
simp only [mul_neg, mul_one]
intro k _ hkj
rw [basis!_on_δ!₂_other hkj]
simp
simp only [mul_zero]
simp
lemma P_δ₃ (f : Fin n → ) : P f (δ₃) = 0 := by
@ -413,7 +413,7 @@ lemma P!_δ!₃ (f : Fin n → ) : P! f (δ!₃) = 0 := by
lemma Pa_δa₁ (f g : Fin n.succ → ) : Pa f g δa₁ = f 0 := by
rw [Pa]
simp
simp only [ACCSystemCharges.chargesAddCommMonoid_add]
nth_rewrite 1 [δa₁_δ₁]
rw [δa₁_δ!₃]
rw [P_δ₁, P!_δ!₃]
@ -421,14 +421,14 @@ lemma Pa_δa₁ (f g : Fin n.succ → ) : Pa f g δa₁ = f 0 := by
lemma Pa_δa₂ (f g : Fin n.succ → ) (j : Fin n) : Pa f g (δa₂ j) = f j.succ + g j.castSucc := by
rw [Pa]
simp
simp only [ACCSystemCharges.chargesAddCommMonoid_add]
nth_rewrite 1 [δa₂_δ₁]
rw [δa₂_δ!₁]
rw [P_δ₁, P!_δ!₁]
lemma Pa_δa₃ (f g : Fin n.succ → ) : Pa f g (δa₃) = g (Fin.last n) := by
rw [Pa]
simp
simp only [ACCSystemCharges.chargesAddCommMonoid_add]
nth_rewrite 1 [δa₃_δ₃]
rw [δa₃_δ!₁]
rw [P_δ₃, P!_δ!₁]
@ -436,7 +436,7 @@ lemma Pa_δa₃ (f g : Fin n.succ → ) : Pa f g (δa₃) = g (Fin.last n) :
lemma Pa_δa₄ (f g : Fin n.succ → ) (j : Fin n.succ) : Pa f g (δa₄ j) = - f j - g j := by
rw [Pa]
simp
simp only [ACCSystemCharges.chargesAddCommMonoid_add]
nth_rewrite 1 [δa₄_δ₂]
rw [δa₄_δ!₂]
rw [P_δ₂, P!_δ!₂]
@ -444,19 +444,19 @@ lemma Pa_δa₄ (f g : Fin n.succ → ) (j : Fin n.succ) : Pa f g (δa₄ j)
lemma P_linearACC (f : Fin n → ) : (accGrav (2 * n + 1)) (P f) = 0 := by
rw [accGrav]
simp
simp only [LinearMap.coe_mk, AddHom.coe_mk]
rw [sum_δ]
simp [P_δ₂, P_δ₁, P_δ₃]
lemma P!_linearACC (f : Fin n → ) : (accGrav (2 * n + 1)) (P! f) = 0 := by
rw [accGrav]
simp
simp only [LinearMap.coe_mk, AddHom.coe_mk]
rw [sum_δ!]
simp [P!_δ!₂, P!_δ!₁, P!_δ!₃]
lemma P_accCube (f : Fin n → ) : accCube (2 * n +1) (P f) = 0 := by
rw [accCube_explicit, sum_δ, P_δ₃]
simp
simp only [ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, zero_pow, Function.comp_apply, zero_add]
apply Finset.sum_eq_zero
intro i _
simp [P_δ₁, P_δ₂]
@ -464,7 +464,7 @@ lemma P_accCube (f : Fin n → ) : accCube (2 * n +1) (P f) = 0 := by
lemma P!_accCube (f : Fin n → ) : accCube (2 * n +1) (P! f) = 0 := by
rw [accCube_explicit, sum_δ!, P!_δ!₃]
simp
simp only [ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, zero_pow, Function.comp_apply, zero_add]
apply Finset.sum_eq_zero
intro i _
simp [P!_δ!₁, P!_δ!₂]
@ -475,13 +475,13 @@ lemma P_P_P!_accCube (g : Fin n → ) (j : Fin n) :
= (P g (δ!₁ j))^2 - (g j)^2 := by
simp [accCubeTriLinSymm]
rw [sum_δ!, basis!_on_δ!₃]
simp
simp only [mul_zero, Function.comp_apply, zero_add]
rw [Finset.sum_eq_single j, basis!_on_δ!₁_self, basis!_on_δ!₂_self]
rw [← δ₂_δ!₂, P_δ₂]
ring
intro k _ hkj
erw [basis!_on_δ!₁_other hkj.symm, basis!_on_δ!₂_other hkj.symm]
simp
simp only [mul_zero, add_zero]
simp
@ -630,7 +630,7 @@ lemma join_ext (g g' : Fin n → ) (f f' : Fin n → ) :
rw [h.left, h.right]
lemma join_Pa (g g' : Fin n.succ → ) (f f' : Fin n.succ → ) :
Pa' (join g f) = Pa' (join g' f') ↔ Pa g f = Pa g' f' := by
Pa' (join g f) = Pa' (join g' f') ↔ Pa g f = Pa g' f' := by
apply Iff.intro
intro h
rw [Pa'_eq] at h
@ -653,7 +653,7 @@ lemma Pa_eq (g g' : Fin n.succ → ) (f f' : Fin n.succ → ) :
lemma basisa_card : Fintype.card ((Fin n.succ) ⊕ (Fin n.succ)) =
FiniteDimensional.finrank (PureU1 (2 * n.succ + 1)).LinSols := by
erw [BasisLinear.finrank_AnomalyFreeLinear]
simp
simp only [Fintype.card_sum, Fintype.card_fin]
omega
/-- The basis formed out of our basisa vectors. -/
@ -662,7 +662,7 @@ noncomputable def basisaAsBasis :
basisOfLinearIndependentOfCardEqFinrank (@basisa_linear_independent n) basisa_card
lemma span_basis (S : (PureU1 (2 * n.succ + 1)).LinSols) :
∃ (g f : Fin n.succ → ) , S.val = P g + P! f := by
∃ (g f : Fin n.succ → ) , S.val = P g + P! f := by
have h := (mem_span_range_iff_exists_fun ).mp (Basis.mem_span basisaAsBasis S)
obtain ⟨f, hf⟩ := h
simp [basisaAsBasis] at hf
@ -700,7 +700,7 @@ lemma span_basis_swap! {S : (PureU1 (2 * n.succ + 1)).LinSols} (j : Fin n.succ)
use f'
change P! f' = _ at hf'
erw [hf']
simp
simp only [and_self, and_true]
change S'.val = P g + (P! f + _)
rw [← add_assoc, ← hS1]
apply swap!_as_add at hS