refactor: lint
This commit is contained in:
parent
07e2b05808
commit
3218b93c27
2 changed files with 61 additions and 58 deletions
|
@ -51,7 +51,7 @@ def δ!₃ : Fin (2 * n.succ) := (Fin.cast (n_cond₂ n) (Fin.castAdd ((n + n) +
|
|||
def δ!₄ : Fin (2 * n.succ) := (Fin.cast (n_cond₂ n) (Fin.natAdd 1 (Fin.natAdd (n + n) 0)))
|
||||
|
||||
lemma ext_δ (S T : Fin (2 * n.succ) → ℚ) (h1 : ∀ i, S (δ₁ i) = T (δ₁ i))
|
||||
(h2 : ∀ i, S (δ₂ i) = T (δ₂ i)) : S = T := by
|
||||
(h2 : ∀ i, S (δ₂ i) = T (δ₂ i)) : S = T := by
|
||||
funext i
|
||||
by_cases hi : i.val < n.succ
|
||||
let j : Fin n.succ := ⟨i, hi⟩
|
||||
|
@ -73,7 +73,7 @@ lemma sum_δ₁_δ₂ (S : Fin (2 * n.succ) → ℚ) :
|
|||
have h1 : ∑ i, S i = ∑ i : Fin (n.succ + n.succ), S (Fin.cast (split_equal n.succ) i) := by
|
||||
rw [Finset.sum_equiv (Fin.castIso (split_equal n.succ)).symm.toEquiv]
|
||||
intro i
|
||||
simp
|
||||
simp only [mem_univ, Fin.symm_castIso, RelIso.coe_fn_toEquiv, Fin.castIso_apply]
|
||||
intro i
|
||||
simp
|
||||
rw [h1]
|
||||
|
@ -85,7 +85,7 @@ lemma sum_δ₁_δ₂' (S : Fin (2 * n.succ) → ℚ) :
|
|||
have h1 : ∑ i, S i = ∑ i : Fin (n.succ + n.succ), S (Fin.cast (split_equal n.succ) i) := by
|
||||
rw [Finset.sum_equiv (Fin.castIso (split_equal n.succ)).symm.toEquiv]
|
||||
intro i
|
||||
simp
|
||||
simp only [mem_univ, Fin.symm_castIso, RelIso.coe_fn_toEquiv, Fin.castIso_apply]
|
||||
intro i
|
||||
simp
|
||||
rw [h1]
|
||||
|
@ -97,12 +97,12 @@ lemma sum_δ!₁_δ!₂ (S : Fin (2 * n.succ) → ℚ) :
|
|||
have h1 : ∑ i, S i = ∑ i : Fin (1 + ((n + n) + 1)), S (Fin.cast (n_cond₂ n) i) := by
|
||||
rw [Finset.sum_equiv (Fin.castIso (n_cond₂ n)).symm.toEquiv]
|
||||
intro i
|
||||
simp
|
||||
simp only [mem_univ, Fin.symm_castIso, RelIso.coe_fn_toEquiv, Fin.castIso_apply]
|
||||
intro i
|
||||
simp
|
||||
rw [h1]
|
||||
rw [Fin.sum_univ_add, Fin.sum_univ_add, Fin.sum_univ_add, Finset.sum_add_distrib]
|
||||
simp
|
||||
simp only [univ_unique, Fin.default_eq_zero, Fin.isValue, sum_singleton, Function.comp_apply]
|
||||
repeat rw [Rat.add_assoc]
|
||||
apply congrArg
|
||||
rw [Rat.add_comm]
|
||||
|
@ -122,12 +122,12 @@ lemma δ!₄_δ₂Last: @δ!₄ n = δ₂ (Fin.last n) := by
|
|||
|
||||
lemma δ!₁_δ₁ (j : Fin n) : δ!₁ j = δ₁ j.succ := by
|
||||
rw [Fin.ext_iff, δ₁, δ!₁]
|
||||
simp
|
||||
simp only [Fin.coe_cast, Fin.coe_natAdd, Fin.coe_castAdd, Fin.val_succ]
|
||||
ring
|
||||
|
||||
lemma δ!₂_δ₂ (j : Fin n) : δ!₂ j = δ₂ j.castSucc := by
|
||||
rw [Fin.ext_iff, δ₂, δ!₂]
|
||||
simp
|
||||
simp only [Fin.coe_cast, Fin.coe_natAdd, Fin.coe_castAdd, Fin.coe_castSucc]
|
||||
ring_nf
|
||||
rw [Nat.succ_eq_add_one]
|
||||
ring
|
||||
|
@ -281,13 +281,13 @@ lemma basis!_on_δ!₄ (j : Fin n) : basis!AsCharges j δ!₄ = 0 := by
|
|||
|
||||
lemma basis_linearACC (j : Fin n.succ) : (accGrav (2 * n.succ)) (basisAsCharges j) = 0 := by
|
||||
rw [accGrav]
|
||||
simp
|
||||
simp only [LinearMap.coe_mk, AddHom.coe_mk]
|
||||
rw [sum_δ₁_δ₂]
|
||||
simp [basis_δ₂_eq_minus_δ₁]
|
||||
|
||||
lemma basis!_linearACC (j : Fin n) : (accGrav (2 * n.succ)) (basis!AsCharges j) = 0 := by
|
||||
rw [accGrav]
|
||||
simp
|
||||
simp only [LinearMap.coe_mk, AddHom.coe_mk]
|
||||
rw [sum_δ!₁_δ!₂, basis!_on_δ!₃, basis!_on_δ!₄]
|
||||
simp [basis!_δ!₂_eq_minus_δ!₁]
|
||||
|
||||
|
@ -303,7 +303,8 @@ lemma basis!_accCube (j : Fin n) :
|
|||
accCube (2 * n.succ) (basis!AsCharges j) = 0 := by
|
||||
rw [accCube_explicit, sum_δ!₁_δ!₂]
|
||||
rw [basis!_on_δ!₄, basis!_on_δ!₃]
|
||||
simp
|
||||
simp only [ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, zero_pow, add_zero, Function.comp_apply,
|
||||
zero_add]
|
||||
apply Finset.sum_eq_zero
|
||||
intro i _
|
||||
simp [basis!_δ!₂_eq_minus_δ!₁]
|
||||
|
@ -369,7 +370,7 @@ lemma P_δ₁ (f : Fin n.succ → ℚ) (j : Fin n.succ) : P f (δ₁ j) = f j :=
|
|||
simp [HSMul.hSMul, SMul.smul]
|
||||
rw [Finset.sum_eq_single j]
|
||||
rw [basis_on_δ₁_self]
|
||||
simp
|
||||
simp only [mul_one]
|
||||
intro k _ hkj
|
||||
rw [basis_on_δ₁_other hkj]
|
||||
simp only [mul_zero]
|
||||
|
@ -380,15 +381,16 @@ lemma P!_δ!₁ (f : Fin n → ℚ) (j : Fin n) : P! f (δ!₁ j) = f j := by
|
|||
simp [HSMul.hSMul, SMul.smul]
|
||||
rw [Finset.sum_eq_single j]
|
||||
rw [basis!_on_δ!₁_self]
|
||||
simp
|
||||
simp only [mul_one]
|
||||
intro k _ hkj
|
||||
rw [basis!_on_δ!₁_other hkj]
|
||||
simp only [mul_zero]
|
||||
simp only [mem_univ, not_true_eq_false, _root_.mul_eq_zero, IsEmpty.forall_iff]
|
||||
|
||||
lemma Pa_δ!₁ (f : Fin n.succ → ℚ) (g : Fin n → ℚ) (j : Fin n) : Pa f g (δ!₁ j) = f j.succ + g j := by
|
||||
lemma Pa_δ!₁ (f : Fin n.succ → ℚ) (g : Fin n → ℚ) (j : Fin n) :
|
||||
Pa f g (δ!₁ j) = f j.succ + g j := by
|
||||
rw [Pa]
|
||||
simp
|
||||
simp only [ACCSystemCharges.chargesAddCommMonoid_add]
|
||||
rw [P!_δ!₁, δ!₁_δ₁, P_δ₁]
|
||||
|
||||
lemma P_δ₂ (f : Fin n.succ → ℚ) (j : Fin n.succ) : P f (δ₂ j) = - f j := by
|
||||
|
@ -396,10 +398,10 @@ lemma P_δ₂ (f : Fin n.succ → ℚ) (j : Fin n.succ) : P f (δ₂ j) = - f j
|
|||
simp [HSMul.hSMul, SMul.smul]
|
||||
rw [Finset.sum_eq_single j]
|
||||
rw [basis_on_δ₂_self]
|
||||
simp
|
||||
simp only [mul_neg, mul_one]
|
||||
intro k _ hkj
|
||||
rw [basis_on_δ₂_other hkj]
|
||||
simp
|
||||
simp only [mul_zero]
|
||||
simp
|
||||
|
||||
lemma P!_δ!₂ (f : Fin n → ℚ) (j : Fin n) : P! f (δ!₂ j) = - f j := by
|
||||
|
@ -407,16 +409,16 @@ lemma P!_δ!₂ (f : Fin n → ℚ) (j : Fin n) : P! f (δ!₂ j) = - f j := by
|
|||
simp [HSMul.hSMul, SMul.smul]
|
||||
rw [Finset.sum_eq_single j]
|
||||
rw [basis!_on_δ!₂_self]
|
||||
simp
|
||||
simp only [mul_neg, mul_one]
|
||||
intro k _ hkj
|
||||
rw [basis!_on_δ!₂_other hkj]
|
||||
simp
|
||||
simp only [mul_zero]
|
||||
simp
|
||||
|
||||
lemma Pa_δ!₂ (f : Fin n.succ → ℚ) (g : Fin n → ℚ) (j : Fin n) :
|
||||
Pa f g (δ!₂ j) = - f j.castSucc - g j := by
|
||||
rw [Pa]
|
||||
simp
|
||||
simp only [ACCSystemCharges.chargesAddCommMonoid_add]
|
||||
rw [P!_δ!₂, δ!₂_δ₂, P_δ₂]
|
||||
ring
|
||||
|
||||
|
@ -426,7 +428,7 @@ lemma P!_δ!₃ (f : Fin n → ℚ) : P! f (δ!₃) = 0 := by
|
|||
|
||||
lemma Pa_δ!₃ (f : Fin n.succ → ℚ) (g : Fin n → ℚ) : Pa f g (δ!₃) = f 0 := by
|
||||
rw [Pa]
|
||||
simp
|
||||
simp only [ACCSystemCharges.chargesAddCommMonoid_add]
|
||||
rw [P!_δ!₃, δ!₃_δ₁0, P_δ₁]
|
||||
simp
|
||||
|
||||
|
@ -436,18 +438,18 @@ lemma P!_δ!₄ (f : Fin n → ℚ) : P! f (δ!₄) = 0 := by
|
|||
|
||||
lemma Pa_δ!₄ (f : Fin n.succ → ℚ) (g : Fin n → ℚ) : Pa f g (δ!₄) = - f (Fin.last n) := by
|
||||
rw [Pa]
|
||||
simp
|
||||
simp only [ACCSystemCharges.chargesAddCommMonoid_add]
|
||||
rw [P!_δ!₄, δ!₄_δ₂Last, P_δ₂]
|
||||
simp
|
||||
|
||||
lemma P_δ₁_δ₂ (f : Fin n.succ → ℚ) : P f ∘ δ₂ = - P f ∘ δ₁ := by
|
||||
funext j
|
||||
simp
|
||||
simp only [PureU1_numberCharges, Function.comp_apply, Pi.neg_apply]
|
||||
rw [P_δ₁, P_δ₂]
|
||||
|
||||
lemma P_linearACC (f : Fin n.succ → ℚ) : (accGrav (2 * n.succ)) (P f) = 0 := by
|
||||
rw [accGrav]
|
||||
simp
|
||||
simp only [LinearMap.coe_mk, AddHom.coe_mk]
|
||||
rw [sum_δ₁_δ₂]
|
||||
simp [P_δ₂, P_δ₁]
|
||||
|
||||
|
@ -460,7 +462,8 @@ lemma P_accCube (f : Fin n.succ → ℚ) : accCube (2 * n.succ) (P f) = 0 := by
|
|||
|
||||
lemma P!_accCube (f : Fin n → ℚ) : accCube (2 * n.succ) (P! f) = 0 := by
|
||||
rw [accCube_explicit, sum_δ!₁_δ!₂, P!_δ!₃, P!_δ!₄]
|
||||
simp
|
||||
simp only [ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, zero_pow, add_zero, Function.comp_apply,
|
||||
zero_add]
|
||||
apply Finset.sum_eq_zero
|
||||
intro i _
|
||||
simp [P!_δ!₁, P!_δ!₂]
|
||||
|
@ -471,14 +474,14 @@ lemma P_P_P!_accCube (g : Fin n.succ → ℚ) (j : Fin n) :
|
|||
= g (j.succ) ^ 2 - g (j.castSucc) ^ 2 := by
|
||||
simp [accCubeTriLinSymm]
|
||||
rw [sum_δ!₁_δ!₂, basis!_on_δ!₃, basis!_on_δ!₄]
|
||||
simp
|
||||
simp only [mul_zero, add_zero, Function.comp_apply, zero_add]
|
||||
rw [Finset.sum_eq_single j, basis!_on_δ!₁_self, basis!_on_δ!₂_self]
|
||||
simp [δ!₁_δ₁, δ!₂_δ₂]
|
||||
rw [P_δ₁, P_δ₂]
|
||||
ring
|
||||
intro k _ hkj
|
||||
erw [basis!_on_δ!₁_other hkj.symm, basis!_on_δ!₂_other hkj.symm]
|
||||
simp
|
||||
simp only [mul_zero, add_zero]
|
||||
simp
|
||||
|
||||
lemma P_P!_P!_accCube (g : Fin n → ℚ) (j : Fin n.succ) :
|
||||
|
@ -486,13 +489,13 @@ lemma P_P!_P!_accCube (g : Fin n → ℚ) (j : Fin n.succ) :
|
|||
= (P! g (δ₁ j))^2 - (P! g (δ₂ j))^2 := by
|
||||
simp [accCubeTriLinSymm]
|
||||
rw [sum_δ₁_δ₂]
|
||||
simp
|
||||
simp only [Function.comp_apply]
|
||||
rw [Finset.sum_eq_single j, basis_on_δ₁_self, basis_on_δ₂_self]
|
||||
simp [δ!₁_δ₁, δ!₂_δ₂]
|
||||
ring
|
||||
intro k _ hkj
|
||||
erw [basis_on_δ₁_other hkj.symm, basis_on_δ₂_other hkj.symm]
|
||||
simp
|
||||
simp only [mul_zero, add_zero]
|
||||
simp
|
||||
|
||||
lemma P_zero (f : Fin n.succ → ℚ) (h : P f = 0) : ∀ i, f i = 0 := by
|
||||
|
@ -642,7 +645,7 @@ lemma join_ext (g g' : Fin n.succ → ℚ) (f f' : Fin n → ℚ) :
|
|||
rw [h.left, h.right]
|
||||
|
||||
lemma join_Pa (g g' : Fin n.succ → ℚ) (f f' : Fin n → ℚ) :
|
||||
Pa' (join g f) = Pa' (join g' f') ↔ Pa g f = Pa g' f' := by
|
||||
Pa' (join g f) = Pa' (join g' f') ↔ Pa g f = Pa g' f' := by
|
||||
apply Iff.intro
|
||||
intro h
|
||||
rw [Pa'_eq] at h
|
||||
|
@ -664,7 +667,7 @@ lemma Pa_eq (g g' : Fin n.succ → ℚ) (f f' : Fin n → ℚ) :
|
|||
lemma basisa_card : Fintype.card ((Fin n.succ) ⊕ (Fin n)) =
|
||||
FiniteDimensional.finrank ℚ (PureU1 (2 * n.succ)).LinSols := by
|
||||
erw [BasisLinear.finrank_AnomalyFreeLinear]
|
||||
simp
|
||||
simp only [Fintype.card_sum, Fintype.card_fin, mul_eq]
|
||||
omega
|
||||
|
||||
/-- The basis formed out of our basisa vectors. -/
|
||||
|
@ -674,7 +677,7 @@ noncomputable def basisaAsBasis :
|
|||
|
||||
|
||||
lemma span_basis (S : (PureU1 (2 * n.succ)).LinSols) :
|
||||
∃ (g : Fin n.succ → ℚ) (f : Fin n → ℚ), S.val = P g + P! f := by
|
||||
∃ (g : Fin n.succ → ℚ) (f : Fin n → ℚ), S.val = P g + P! f := by
|
||||
have h := (mem_span_range_iff_exists_fun ℚ).mp (Basis.mem_span basisaAsBasis S)
|
||||
obtain ⟨f, hf⟩ := h
|
||||
simp [basisaAsBasis] at hf
|
||||
|
@ -717,7 +720,7 @@ lemma span_basis_swap! {S : (PureU1 (2 * n.succ)).LinSols} (j : Fin n)
|
|||
use f'
|
||||
change P! f' = _ at hf'
|
||||
erw [hf']
|
||||
simp
|
||||
simp only [and_self, and_true]
|
||||
change S'.val = P g + (P! f + _)
|
||||
rw [← add_assoc, ← h]
|
||||
apply swap!_as_add at hS
|
||||
|
|
|
@ -117,12 +117,12 @@ lemma sum_δ (S : Fin (2 * n + 1) → ℚ) :
|
|||
have h1 : ∑ i, S i = ∑ i : Fin (n + 1 + n), S (Fin.cast (split_odd n) i) := by
|
||||
rw [Finset.sum_equiv (Fin.castIso (split_odd n)).symm.toEquiv]
|
||||
intro i
|
||||
simp
|
||||
simp only [mem_univ, Fin.symm_castIso, RelIso.coe_fn_toEquiv, Fin.castIso_apply]
|
||||
intro i
|
||||
simp
|
||||
rw [h1]
|
||||
rw [Fin.sum_univ_add, Fin.sum_univ_add]
|
||||
simp
|
||||
simp only [univ_unique, Fin.default_eq_zero, Fin.isValue, sum_singleton, Function.comp_apply]
|
||||
nth_rewrite 2 [add_comm]
|
||||
rw [add_assoc]
|
||||
rw [Finset.sum_add_distrib]
|
||||
|
@ -133,12 +133,12 @@ lemma sum_δ! (S : Fin (2 * n + 1) → ℚ) :
|
|||
have h1 : ∑ i, S i = ∑ i : Fin ((1+n)+n), S (Fin.cast (split_odd! n) i) := by
|
||||
rw [Finset.sum_equiv (Fin.castIso (split_odd! n)).symm.toEquiv]
|
||||
intro i
|
||||
simp
|
||||
simp only [mem_univ, Fin.symm_castIso, RelIso.coe_fn_toEquiv, Fin.castIso_apply]
|
||||
intro i
|
||||
simp
|
||||
rw [h1]
|
||||
rw [Fin.sum_univ_add, Fin.sum_univ_add]
|
||||
simp
|
||||
simp only [univ_unique, Fin.default_eq_zero, Fin.isValue, sum_singleton, Function.comp_apply]
|
||||
rw [add_assoc]
|
||||
rw [Finset.sum_add_distrib]
|
||||
rfl
|
||||
|
@ -293,13 +293,13 @@ lemma basis!_on_δ!₃ (j : Fin n) : basis!AsCharges j δ!₃ = 0 := by
|
|||
|
||||
lemma basis_linearACC (j : Fin n) : (accGrav (2 * n + 1)) (basisAsCharges j) = 0 := by
|
||||
rw [accGrav]
|
||||
simp
|
||||
simp only [LinearMap.coe_mk, AddHom.coe_mk]
|
||||
erw [sum_δ]
|
||||
simp [basis_δ₂_eq_minus_δ₁, basis_on_δ₃]
|
||||
|
||||
lemma basis!_linearACC (j : Fin n) : (accGrav (2 * n + 1)) (basis!AsCharges j) = 0 := by
|
||||
rw [accGrav]
|
||||
simp
|
||||
simp only [LinearMap.coe_mk, AddHom.coe_mk]
|
||||
rw [sum_δ!, basis!_on_δ!₃]
|
||||
simp [basis!_δ!₂_eq_minus_δ!₁]
|
||||
|
||||
|
@ -364,7 +364,7 @@ lemma P_δ₁ (f : Fin n → ℚ) (j : Fin n) : P f (δ₁ j) = f j := by
|
|||
simp [HSMul.hSMul, SMul.smul]
|
||||
rw [Finset.sum_eq_single j]
|
||||
rw [basis_on_δ₁_self]
|
||||
simp
|
||||
simp only [mul_one]
|
||||
intro k _ hkj
|
||||
rw [basis_on_δ₁_other hkj]
|
||||
simp only [mul_zero]
|
||||
|
@ -375,7 +375,7 @@ lemma P!_δ!₁ (f : Fin n → ℚ) (j : Fin n) : P! f (δ!₁ j) = f j := by
|
|||
simp [HSMul.hSMul, SMul.smul]
|
||||
rw [Finset.sum_eq_single j]
|
||||
rw [basis!_on_δ!₁_self]
|
||||
simp
|
||||
simp only [mul_one]
|
||||
intro k _ hkj
|
||||
rw [basis!_on_δ!₁_other hkj]
|
||||
simp only [mul_zero]
|
||||
|
@ -386,10 +386,10 @@ lemma P_δ₂ (f : Fin n → ℚ) (j : Fin n) : P f (δ₂ j) = - f j := by
|
|||
simp [HSMul.hSMul, SMul.smul]
|
||||
rw [Finset.sum_eq_single j]
|
||||
rw [basis_on_δ₂_self]
|
||||
simp
|
||||
simp only [mul_neg, mul_one]
|
||||
intro k _ hkj
|
||||
rw [basis_on_δ₂_other hkj]
|
||||
simp
|
||||
simp only [mul_zero]
|
||||
simp
|
||||
|
||||
lemma P!_δ!₂ (f : Fin n → ℚ) (j : Fin n) : P! f (δ!₂ j) = - f j := by
|
||||
|
@ -397,10 +397,10 @@ lemma P!_δ!₂ (f : Fin n → ℚ) (j : Fin n) : P! f (δ!₂ j) = - f j := by
|
|||
simp [HSMul.hSMul, SMul.smul]
|
||||
rw [Finset.sum_eq_single j]
|
||||
rw [basis!_on_δ!₂_self]
|
||||
simp
|
||||
simp only [mul_neg, mul_one]
|
||||
intro k _ hkj
|
||||
rw [basis!_on_δ!₂_other hkj]
|
||||
simp
|
||||
simp only [mul_zero]
|
||||
simp
|
||||
|
||||
lemma P_δ₃ (f : Fin n → ℚ) : P f (δ₃) = 0 := by
|
||||
|
@ -413,7 +413,7 @@ lemma P!_δ!₃ (f : Fin n → ℚ) : P! f (δ!₃) = 0 := by
|
|||
|
||||
lemma Pa_δa₁ (f g : Fin n.succ → ℚ) : Pa f g δa₁ = f 0 := by
|
||||
rw [Pa]
|
||||
simp
|
||||
simp only [ACCSystemCharges.chargesAddCommMonoid_add]
|
||||
nth_rewrite 1 [δa₁_δ₁]
|
||||
rw [δa₁_δ!₃]
|
||||
rw [P_δ₁, P!_δ!₃]
|
||||
|
@ -421,14 +421,14 @@ lemma Pa_δa₁ (f g : Fin n.succ → ℚ) : Pa f g δa₁ = f 0 := by
|
|||
|
||||
lemma Pa_δa₂ (f g : Fin n.succ → ℚ) (j : Fin n) : Pa f g (δa₂ j) = f j.succ + g j.castSucc := by
|
||||
rw [Pa]
|
||||
simp
|
||||
simp only [ACCSystemCharges.chargesAddCommMonoid_add]
|
||||
nth_rewrite 1 [δa₂_δ₁]
|
||||
rw [δa₂_δ!₁]
|
||||
rw [P_δ₁, P!_δ!₁]
|
||||
|
||||
lemma Pa_δa₃ (f g : Fin n.succ → ℚ) : Pa f g (δa₃) = g (Fin.last n) := by
|
||||
rw [Pa]
|
||||
simp
|
||||
simp only [ACCSystemCharges.chargesAddCommMonoid_add]
|
||||
nth_rewrite 1 [δa₃_δ₃]
|
||||
rw [δa₃_δ!₁]
|
||||
rw [P_δ₃, P!_δ!₁]
|
||||
|
@ -436,7 +436,7 @@ lemma Pa_δa₃ (f g : Fin n.succ → ℚ) : Pa f g (δa₃) = g (Fin.last n) :
|
|||
|
||||
lemma Pa_δa₄ (f g : Fin n.succ → ℚ) (j : Fin n.succ) : Pa f g (δa₄ j) = - f j - g j := by
|
||||
rw [Pa]
|
||||
simp
|
||||
simp only [ACCSystemCharges.chargesAddCommMonoid_add]
|
||||
nth_rewrite 1 [δa₄_δ₂]
|
||||
rw [δa₄_δ!₂]
|
||||
rw [P_δ₂, P!_δ!₂]
|
||||
|
@ -444,19 +444,19 @@ lemma Pa_δa₄ (f g : Fin n.succ → ℚ) (j : Fin n.succ) : Pa f g (δa₄ j)
|
|||
|
||||
lemma P_linearACC (f : Fin n → ℚ) : (accGrav (2 * n + 1)) (P f) = 0 := by
|
||||
rw [accGrav]
|
||||
simp
|
||||
simp only [LinearMap.coe_mk, AddHom.coe_mk]
|
||||
rw [sum_δ]
|
||||
simp [P_δ₂, P_δ₁, P_δ₃]
|
||||
|
||||
lemma P!_linearACC (f : Fin n → ℚ) : (accGrav (2 * n + 1)) (P! f) = 0 := by
|
||||
rw [accGrav]
|
||||
simp
|
||||
simp only [LinearMap.coe_mk, AddHom.coe_mk]
|
||||
rw [sum_δ!]
|
||||
simp [P!_δ!₂, P!_δ!₁, P!_δ!₃]
|
||||
|
||||
lemma P_accCube (f : Fin n → ℚ) : accCube (2 * n +1) (P f) = 0 := by
|
||||
rw [accCube_explicit, sum_δ, P_δ₃]
|
||||
simp
|
||||
simp only [ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, zero_pow, Function.comp_apply, zero_add]
|
||||
apply Finset.sum_eq_zero
|
||||
intro i _
|
||||
simp [P_δ₁, P_δ₂]
|
||||
|
@ -464,7 +464,7 @@ lemma P_accCube (f : Fin n → ℚ) : accCube (2 * n +1) (P f) = 0 := by
|
|||
|
||||
lemma P!_accCube (f : Fin n → ℚ) : accCube (2 * n +1) (P! f) = 0 := by
|
||||
rw [accCube_explicit, sum_δ!, P!_δ!₃]
|
||||
simp
|
||||
simp only [ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, zero_pow, Function.comp_apply, zero_add]
|
||||
apply Finset.sum_eq_zero
|
||||
intro i _
|
||||
simp [P!_δ!₁, P!_δ!₂]
|
||||
|
@ -475,13 +475,13 @@ lemma P_P_P!_accCube (g : Fin n → ℚ) (j : Fin n) :
|
|||
= (P g (δ!₁ j))^2 - (g j)^2 := by
|
||||
simp [accCubeTriLinSymm]
|
||||
rw [sum_δ!, basis!_on_δ!₃]
|
||||
simp
|
||||
simp only [mul_zero, Function.comp_apply, zero_add]
|
||||
rw [Finset.sum_eq_single j, basis!_on_δ!₁_self, basis!_on_δ!₂_self]
|
||||
rw [← δ₂_δ!₂, P_δ₂]
|
||||
ring
|
||||
intro k _ hkj
|
||||
erw [basis!_on_δ!₁_other hkj.symm, basis!_on_δ!₂_other hkj.symm]
|
||||
simp
|
||||
simp only [mul_zero, add_zero]
|
||||
simp
|
||||
|
||||
|
||||
|
@ -630,7 +630,7 @@ lemma join_ext (g g' : Fin n → ℚ) (f f' : Fin n → ℚ) :
|
|||
rw [h.left, h.right]
|
||||
|
||||
lemma join_Pa (g g' : Fin n.succ → ℚ) (f f' : Fin n.succ → ℚ) :
|
||||
Pa' (join g f) = Pa' (join g' f') ↔ Pa g f = Pa g' f' := by
|
||||
Pa' (join g f) = Pa' (join g' f') ↔ Pa g f = Pa g' f' := by
|
||||
apply Iff.intro
|
||||
intro h
|
||||
rw [Pa'_eq] at h
|
||||
|
@ -653,7 +653,7 @@ lemma Pa_eq (g g' : Fin n.succ → ℚ) (f f' : Fin n.succ → ℚ) :
|
|||
lemma basisa_card : Fintype.card ((Fin n.succ) ⊕ (Fin n.succ)) =
|
||||
FiniteDimensional.finrank ℚ (PureU1 (2 * n.succ + 1)).LinSols := by
|
||||
erw [BasisLinear.finrank_AnomalyFreeLinear]
|
||||
simp
|
||||
simp only [Fintype.card_sum, Fintype.card_fin]
|
||||
omega
|
||||
|
||||
/-- The basis formed out of our basisa vectors. -/
|
||||
|
@ -662,7 +662,7 @@ noncomputable def basisaAsBasis :
|
|||
basisOfLinearIndependentOfCardEqFinrank (@basisa_linear_independent n) basisa_card
|
||||
|
||||
lemma span_basis (S : (PureU1 (2 * n.succ + 1)).LinSols) :
|
||||
∃ (g f : Fin n.succ → ℚ) , S.val = P g + P! f := by
|
||||
∃ (g f : Fin n.succ → ℚ) , S.val = P g + P! f := by
|
||||
have h := (mem_span_range_iff_exists_fun ℚ).mp (Basis.mem_span basisaAsBasis S)
|
||||
obtain ⟨f, hf⟩ := h
|
||||
simp [basisaAsBasis] at hf
|
||||
|
@ -700,7 +700,7 @@ lemma span_basis_swap! {S : (PureU1 (2 * n.succ + 1)).LinSols} (j : Fin n.succ)
|
|||
use f'
|
||||
change P! f' = _ at hf'
|
||||
erw [hf']
|
||||
simp
|
||||
simp only [and_self, and_true]
|
||||
change S'.val = P g + (P! f + _)
|
||||
rw [← add_assoc, ← hS1]
|
||||
apply swap!_as_add at hS
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue