refactor: Lint

This commit is contained in:
jstoobysmith 2025-01-30 05:35:42 +00:00
parent 22636db606
commit 32aefb7eb7
9 changed files with 209 additions and 166 deletions

View file

@ -49,8 +49,11 @@ lemma ι_superCommute_eq_of_equiv_right (a b1 b2 : 𝓕.CrAnAlgebra) (h : b1 ≈
simp only [LinearMap.mem_ker, ← map_sub]
exact ι_superCommute_right_zero_of_mem_ideal a (b1 - b2) h
noncomputable def superCommuteRight (a : 𝓕.CrAnAlgebra) : FieldOpAlgebra 𝓕 →ₗ[] FieldOpAlgebra 𝓕 where
toFun := Quotient.lift (ι.toLinearMap ∘ₗ CrAnAlgebra.superCommute a) (ι_superCommute_eq_of_equiv_right a)
/-- The super commutor on the `FieldOpAlgebra` defined as a linear map `[a,_]ₛ`. -/
noncomputable def superCommuteRight (a : 𝓕.CrAnAlgebra) :
FieldOpAlgebra 𝓕 →ₗ[] FieldOpAlgebra 𝓕 where
toFun := Quotient.lift (ι.toLinearMap ∘ₗ CrAnAlgebra.superCommute a)
(ι_superCommute_eq_of_equiv_right a)
map_add' x y := by
obtain ⟨x, hx⟩ := ι_surjective x
obtain ⟨y, hy⟩ := ι_surjective y
@ -64,11 +67,11 @@ noncomputable def superCommuteRight (a : 𝓕.CrAnAlgebra) : FieldOpAlgebra 𝓕
rw [← map_smul, ι_apply, ι_apply]
simp
lemma superCommuteRight_apply_ι (a b : 𝓕.CrAnAlgebra) : superCommuteRight a (ι b) = ι [a, b]ₛca := by
rfl
lemma superCommuteRight_apply_ι (a b : 𝓕.CrAnAlgebra) :
superCommuteRight a (ι b) = ι [a, b]ₛca := by rfl
lemma superCommuteRight_apply_quot (a b : 𝓕.CrAnAlgebra) : superCommuteRight a ⟦b⟧= ι [a, b]ₛca := by
rfl
lemma superCommuteRight_apply_quot (a b : 𝓕.CrAnAlgebra) :
superCommuteRight a ⟦b⟧= ι [a, b]ₛca := by rfl
lemma superCommuteRight_eq_of_equiv (a1 a2 : 𝓕.CrAnAlgebra) (h : a1 ≈ a2) :
superCommuteRight a1 = superCommuteRight a2 := by
@ -85,6 +88,7 @@ lemma superCommuteRight_eq_of_equiv (a1 a2 : 𝓕.CrAnAlgebra) (h : a1 ≈ a2) :
simp only [add_sub_cancel]
simp
/-- The super commutor on the `FieldOpAlgebra`. -/
noncomputable def superCommute : FieldOpAlgebra 𝓕 →ₗ[]
FieldOpAlgebra 𝓕 →ₗ[] FieldOpAlgebra 𝓕 where
toFun := Quotient.lift superCommuteRight superCommuteRight_eq_of_equiv