Update Proper.lean

This commit is contained in:
jstoobysmith 2024-08-21 06:52:46 -04:00
parent c2eb4bbe9d
commit 33f694169f

View file

@ -27,9 +27,8 @@ variable {d : }
/-- The determinant of a member of the Lorentz group is `1` or `-1`. -/
lemma det_eq_one_or_neg_one (Λ : 𝓛 d) : Λ.1.det = 1 Λ.1.det = -1 := by
have h1 := (congrArg det ((mem_iff_self_mul_dual).mp Λ.2))
simp [det_mul, det_dual] at h1
exact mul_self_eq_one_iff.mp h1
refine mul_self_eq_one_iff.mp ?_
simpa only [det_mul, det_dual, det_one] using congrArg det ((mem_iff_self_mul_dual).mp Λ.2)
local notation "ℤ₂" => Multiplicative (ZMod 2)
@ -44,9 +43,8 @@ instance : TopologicalGroup ℤ₂ := TopologicalGroup.mk
@[simps!]
def coeFor₂ : C(({-1, 1} : Set ), ℤ₂) where
toFun x := if x = ⟨1, Set.mem_insert_of_mem (-1) rfl⟩
then (Additive.toMul 0) else (Additive.toMul (1 : ZMod 2))
continuous_toFun := by
exact continuous_of_discreteTopology
then Additive.toMul 0 else Additive.toMul (1 : ZMod 2)
continuous_toFun := continuous_of_discreteTopology
/-- The continuous map taking a Lorentz matrix to its determinant. -/
def detContinuous : C(𝓛 d, ℤ₂) :=
@ -54,14 +52,15 @@ def detContinuous : C(𝓛 d, ℤ₂) :=
toFun := fun Λ => ⟨Λ.1.det, Or.symm (LorentzGroup.det_eq_one_or_neg_one _)⟩,
continuous_toFun := by
refine Continuous.subtype_mk ?_ _
apply Continuous.matrix_det $
exact Continuous.matrix_det $
Continuous.comp' (continuous_iff_le_induced.mpr fun U a => a) continuous_id'
}
lemma detContinuous_eq_iff_det_eq (Λ Λ' : LorentzGroup d) :
detContinuous Λ = detContinuous Λ' ↔ Λ.1.det = Λ'.1.det := by
refine Iff.intro (fun h => ?_) (fun h => ?_)
· simp [detContinuous] at h
· simp only [detContinuous, ContinuousMap.comp_apply, ContinuousMap.coe_mk, coeFor₂_apply,
Subtype.mk.injEq] at h
cases' det_eq_one_or_neg_one Λ with h1 h1
<;> cases' det_eq_one_or_neg_one Λ' with h2 h2
<;> simp_all [h1, h2, h]
@ -78,8 +77,7 @@ def detRep : 𝓛 d →* ℤ₂ where
toFun Λ := detContinuous Λ
map_one' := by
simp [detContinuous, lorentzGroupIsGroup]
map_mul' := by
intro Λ1 Λ2
map_mul' Λ1 Λ2 := by
simp only [Submonoid.coe_mul, Subgroup.coe_toSubmonoid, Units.val_mul, det_mul, toMul_zero,
mul_ite, mul_one, ite_mul, one_mul]
cases' (det_eq_one_or_neg_one Λ1) with h1 h1
@ -100,7 +98,8 @@ lemma det_on_connected_component {Λ Λ' : LorentzGroup d} (h : Λ' ∈ connecte
lemma detRep_on_connected_component {Λ Λ' : LorentzGroup d} (h : Λ' ∈ connectedComponent Λ) :
detRep Λ = detRep Λ' := by
simp [detRep_apply, detRep_apply, detContinuous]
simp only [detRep_apply, detContinuous, ContinuousMap.comp_apply, ContinuousMap.coe_mk,
coeFor₂_apply, Subtype.mk.injEq]
rw [det_on_connected_component h]
lemma det_of_joined {Λ Λ' : LorentzGroup d} (h : Joined Λ Λ') : Λ.1.det = Λ'.1.det :=
@ -115,8 +114,8 @@ instance : DecidablePred (@IsProper d) := by
apply Real.decidableEq
lemma IsProper_iff (Λ : LorentzGroup d) : IsProper Λ ↔ detRep Λ = 1 := by
rw [show 1 = detRep 1 from Eq.symm (MonoidHom.map_one detRep)]
rw [detRep_apply, detRep_apply, detContinuous_eq_iff_det_eq]
rw [show 1 = detRep 1 from Eq.symm (MonoidHom.map_one detRep), detRep_apply, detRep_apply,
detContinuous_eq_iff_det_eq]
simp only [IsProper, lorentzGroupIsGroup_one_coe, det_one]
lemma id_IsProper : @IsProper d 1 := by