Refactor: Metrics as complex lorentz tensors
This commit is contained in:
parent
324f448ec7
commit
34c3643bac
8 changed files with 448 additions and 240 deletions
|
@ -100,65 +100,6 @@ lemma antiSymm_add_self {A : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
|
|||
apply TensorTree.add_tensor_eq_snd
|
||||
rw [neg_tensor_eq hA, neg_tensor_eq (neg_perm _ _), neg_neg]
|
||||
|
||||
/-!
|
||||
|
||||
## The contraction of Pauli matrices with Pauli matrices
|
||||
|
||||
And related results.
|
||||
|
||||
-/
|
||||
|
||||
/-- The map to color one gets when multiplying left and right metrics. -/
|
||||
def leftMetricMulRightMap := (Sum.elim ![Color.upL, Color.upL] ![Color.upR, Color.upR]) ∘
|
||||
finSumFinEquiv.symm
|
||||
|
||||
lemma leftMetric_mul_rightMetric : {Fermion.leftMetric | α α' ⊗ Fermion.rightMetric | β β'}ᵀ.tensor
|
||||
= basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
|
||||
- basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)
|
||||
- basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
|
||||
+ basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by
|
||||
rw [prod_tensor_eq_fst (leftMetric_expand_tree)]
|
||||
rw [prod_tensor_eq_snd (rightMetric_expand_tree)]
|
||||
rw [prod_add_both]
|
||||
rw [add_tensor_eq_fst <| add_tensor_eq_fst <| smul_prod _ _ _]
|
||||
rw [add_tensor_eq_fst <| add_tensor_eq_fst <| smul_tensor_eq <| prod_smul _ _ _]
|
||||
rw [add_tensor_eq_fst <| add_tensor_eq_fst <| smul_smul _ _ _]
|
||||
rw [add_tensor_eq_fst <| add_tensor_eq_fst <| smul_eq_one _ _ (by simp)]
|
||||
rw [add_tensor_eq_fst <| add_tensor_eq_snd <| smul_prod _ _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _]
|
||||
rw [add_tensor_eq_fst <| add_tensor_eq_fst <| prod_basisVector_tree _ _]
|
||||
rw [add_tensor_eq_fst <| add_tensor_eq_snd <| smul_tensor_eq <| prod_basisVector_tree _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| prod_basisVector_tree _ _]
|
||||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| prod_basisVector_tree _ _]
|
||||
rw [← add_assoc]
|
||||
simp only [add_tensor, smul_tensor, tensorNode_tensor]
|
||||
change _ = basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
|
||||
+- basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)
|
||||
+- basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
|
||||
+ basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0)
|
||||
congr 1
|
||||
congr 1
|
||||
congr 1
|
||||
all_goals
|
||||
congr
|
||||
funext x
|
||||
fin_cases x <;> rfl
|
||||
|
||||
lemma leftMetric_mul_rightMetric_tree :
|
||||
{Fermion.leftMetric | α α' ⊗ Fermion.rightMetric | β β'}ᵀ.tensor
|
||||
= (TensorTree.add (tensorNode
|
||||
(basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1))) <|
|
||||
TensorTree.add (TensorTree.smul (-1 : ℂ) (tensorNode
|
||||
(basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)))) <|
|
||||
TensorTree.add (TensorTree.smul (-1 : ℂ) (tensorNode
|
||||
(basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)))) <|
|
||||
(tensorNode
|
||||
(basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0)))).tensor := by
|
||||
rw [leftMetric_mul_rightMetric]
|
||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, add_tensor, tensorNode_tensor,
|
||||
smul_tensor, neg_smul, one_smul]
|
||||
rfl
|
||||
|
||||
end complexLorentzTensor
|
||||
|
||||
end
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue