Refactor: Metrics as complex lorentz tensors
This commit is contained in:
parent
324f448ec7
commit
34c3643bac
8 changed files with 448 additions and 240 deletions
191
HepLean/Tensors/ComplexLorentz/Metrics/Basis.lean
Normal file
191
HepLean/Tensors/ComplexLorentz/Metrics/Basis.lean
Normal file
|
@ -0,0 +1,191 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.ComplexLorentz.Metrics.Basic
|
||||
import HepLean.Tensors.ComplexLorentz.Basis
|
||||
/-!
|
||||
|
||||
## Metrics and basis expansions
|
||||
|
||||
-/
|
||||
open IndexNotation
|
||||
open CategoryTheory
|
||||
open MonoidalCategory
|
||||
open Matrix
|
||||
open MatrixGroups
|
||||
open Complex
|
||||
open TensorProduct
|
||||
open IndexNotation
|
||||
open CategoryTheory
|
||||
open TensorTree
|
||||
open OverColor.Discrete
|
||||
noncomputable section
|
||||
|
||||
namespace complexLorentzTensor
|
||||
|
||||
/-- The expansion of the Lorentz covariant metric in terms of basis vectors. -/
|
||||
lemma coMetric_basis_expand : {η' | μ ν}ᵀ.tensor =
|
||||
basisVector ![Color.down, Color.down] (fun _ => 0)
|
||||
- basisVector ![Color.down, Color.down] (fun _ => 1)
|
||||
- basisVector ![Color.down, Color.down] (fun _ => 2)
|
||||
- basisVector ![Color.down, Color.down] (fun _ => 3) := by
|
||||
rw [tensorNode_coMetric]
|
||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, constTwoNode_tensor,
|
||||
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||||
Functor.id_obj, Fin.isValue]
|
||||
erw [Lorentz.coMetric_apply_one, Lorentz.coMetricVal_expand_tmul]
|
||||
simp only [Fin.isValue, map_sub]
|
||||
congr 1
|
||||
congr 1
|
||||
congr 1
|
||||
all_goals
|
||||
erw [pairIsoSep_tmul, basisVector]
|
||||
apply congrArg
|
||||
funext i
|
||||
fin_cases i
|
||||
all_goals
|
||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.zero_eta, Fin.isValue, OverColor.mk_hom,
|
||||
cons_val_zero, Fin.cases_zero]
|
||||
change _ = Lorentz.complexCoBasisFin4 _
|
||||
simp only [Fin.isValue, Lorentz.complexCoBasisFin4, Basis.coe_reindex, Function.comp_apply]
|
||||
rfl
|
||||
|
||||
lemma coMetric_basis_expand_tree : {η' | μ ν}ᵀ.tensor =
|
||||
(TensorTree.add (tensorNode (basisVector ![Color.down, Color.down] (fun _ => 0))) <|
|
||||
TensorTree.add (smul (-1) (tensorNode (basisVector ![Color.down, Color.down] (fun _ => 1)))) <|
|
||||
TensorTree.add (smul (-1) (tensorNode (basisVector ![Color.down, Color.down] (fun _ => 2)))) <|
|
||||
(smul (-1) (tensorNode (basisVector ![Color.down, Color.down] (fun _ => 3))))).tensor :=
|
||||
coMetric_basis_expand
|
||||
|
||||
/-- The expansion of the Lorentz contrvariant metric in terms of basis vectors. -/
|
||||
lemma contrMatrix_basis_expand : {η | μ ν}ᵀ.tensor =
|
||||
basisVector ![Color.up, Color.up] (fun _ => 0)
|
||||
- basisVector ![Color.up, Color.up] (fun _ => 1)
|
||||
- basisVector ![Color.up, Color.up] (fun _ => 2)
|
||||
- basisVector ![Color.up, Color.up] (fun _ => 3) := by
|
||||
rw [tensorNode_contrMetric]
|
||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, constTwoNode_tensor,
|
||||
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V]
|
||||
erw [Lorentz.contrMetric_apply_one, Lorentz.contrMetricVal_expand_tmul]
|
||||
simp only [Fin.isValue, map_sub]
|
||||
congr 1
|
||||
congr 1
|
||||
congr 1
|
||||
all_goals
|
||||
erw [pairIsoSep_tmul, basisVector]
|
||||
apply congrArg
|
||||
funext i
|
||||
fin_cases i
|
||||
all_goals
|
||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.zero_eta, Fin.isValue, OverColor.mk_hom,
|
||||
cons_val_zero, Fin.cases_zero]
|
||||
change _ = Lorentz.complexContrBasisFin4 _
|
||||
simp only [Fin.isValue, Lorentz.complexContrBasisFin4, Basis.coe_reindex, Function.comp_apply]
|
||||
rfl
|
||||
|
||||
lemma contrMatrix_basis_expand_tree : {η | μ ν}ᵀ.tensor =
|
||||
(TensorTree.add (tensorNode (basisVector ![Color.up, Color.up] (fun _ => 0))) <|
|
||||
TensorTree.add (smul (-1) (tensorNode (basisVector ![Color.up, Color.up] (fun _ => 1)))) <|
|
||||
TensorTree.add (smul (-1) (tensorNode (basisVector ![Color.up, Color.up] (fun _ => 2)))) <|
|
||||
(smul (-1) (tensorNode (basisVector ![Color.up, Color.up] (fun _ => 3))))).tensor :=
|
||||
contrMatrix_basis_expand
|
||||
|
||||
lemma leftMetric_expand : {εL | α β}ᵀ.tensor =
|
||||
- basisVector ![Color.upL, Color.upL] (fun | 0 => 0 | 1 => 1)
|
||||
+ basisVector ![Color.upL, Color.upL] (fun | 0 => 1 | 1 => 0) := by
|
||||
rw [tensorNode_leftMetric]
|
||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, constTwoNode_tensor,
|
||||
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V, Fin.isValue]
|
||||
erw [Fermion.leftMetric_apply_one, Fermion.leftMetricVal_expand_tmul]
|
||||
simp only [Fin.isValue, map_add, map_neg]
|
||||
congr 1
|
||||
congr 1
|
||||
all_goals
|
||||
erw [pairIsoSep_tmul, basisVector]
|
||||
apply congrArg
|
||||
funext i
|
||||
fin_cases i
|
||||
· rfl
|
||||
· rfl
|
||||
|
||||
lemma leftMetric_expand_tree : {εL | α β}ᵀ.tensor =
|
||||
(TensorTree.add (smul (-1) (tensorNode (basisVector ![Color.upL, Color.upL]
|
||||
(fun | 0 => 0 | 1 => 1)))) <|
|
||||
(tensorNode (basisVector ![Color.upL, Color.upL] (fun | 0 => 1 | 1 => 0)))).tensor :=
|
||||
leftMetric_expand
|
||||
|
||||
lemma altLeftMetric_expand : {εL' | α β}ᵀ.tensor =
|
||||
basisVector ![Color.downL, Color.downL] (fun | 0 => 0 | 1 => 1)
|
||||
- basisVector ![Color.downL, Color.downL] (fun | 0 => 1 | 1 => 0) := by
|
||||
rw [tensorNode_altLeftMetric]
|
||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, constTwoNode_tensor,
|
||||
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V, Fin.isValue]
|
||||
erw [Fermion.altLeftMetric_apply_one, Fermion.altLeftMetricVal_expand_tmul]
|
||||
simp only [Fin.isValue, map_sub]
|
||||
congr 1
|
||||
all_goals
|
||||
erw [pairIsoSep_tmul, basisVector]
|
||||
apply congrArg
|
||||
funext i
|
||||
fin_cases i
|
||||
· rfl
|
||||
· rfl
|
||||
|
||||
lemma altLeftMetric_expand_tree : {εL' | α β}ᵀ.tensor =
|
||||
(TensorTree.add (tensorNode (basisVector ![Color.downL, Color.downL]
|
||||
(fun | 0 => 0 | 1 => 1))) <|
|
||||
(smul (-1) (tensorNode (basisVector ![Color.downL, Color.downL]
|
||||
(fun | 0 => 1 | 1 => 0))))).tensor :=
|
||||
altLeftMetric_expand
|
||||
|
||||
lemma rightMetric_expand : {εR | α β}ᵀ.tensor =
|
||||
- basisVector ![Color.upR, Color.upR] (fun | 0 => 0 | 1 => 1)
|
||||
+ basisVector ![Color.upR, Color.upR] (fun | 0 => 1 | 1 => 0) := by
|
||||
rw [tensorNode_rightMetric]
|
||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, constTwoNode_tensor,
|
||||
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V, Fin.isValue]
|
||||
erw [Fermion.rightMetric_apply_one, Fermion.rightMetricVal_expand_tmul]
|
||||
simp only [Fin.isValue, map_add, map_neg]
|
||||
congr 1
|
||||
congr 1
|
||||
all_goals
|
||||
erw [pairIsoSep_tmul, basisVector]
|
||||
apply congrArg
|
||||
funext i
|
||||
fin_cases i
|
||||
· rfl
|
||||
· rfl
|
||||
|
||||
lemma rightMetric_expand_tree : {εR | α β}ᵀ.tensor =
|
||||
(TensorTree.add (smul (-1) (tensorNode (basisVector ![Color.upR, Color.upR]
|
||||
(fun | 0 => 0 | 1 => 1)))) <|
|
||||
(tensorNode (basisVector ![Color.upR, Color.upR] (fun | 0 => 1 | 1 => 0)))).tensor :=
|
||||
rightMetric_expand
|
||||
|
||||
lemma altRightMetric_expand : {εR' | α β}ᵀ.tensor =
|
||||
basisVector ![Color.downR, Color.downR] (fun | 0 => 0 | 1 => 1)
|
||||
- basisVector ![Color.downR, Color.downR] (fun | 0 => 1 | 1 => 0) := by
|
||||
rw [tensorNode_altRightMetric]
|
||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, constTwoNode_tensor,
|
||||
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V, Fin.isValue]
|
||||
erw [Fermion.altRightMetric_apply_one, Fermion.altRightMetricVal_expand_tmul]
|
||||
simp only [Fin.isValue, map_sub]
|
||||
congr 1
|
||||
all_goals
|
||||
erw [pairIsoSep_tmul, basisVector]
|
||||
apply congrArg
|
||||
funext i
|
||||
fin_cases i
|
||||
· rfl
|
||||
· rfl
|
||||
|
||||
lemma altRightMetric_expand_tree : {εR' | α β}ᵀ.tensor =
|
||||
(TensorTree.add (tensorNode (basisVector
|
||||
![Color.downR, Color.downR] (fun | 0 => 0 | 1 => 1))) <|
|
||||
(smul (-1) (tensorNode (basisVector ![Color.downR, Color.downR]
|
||||
(fun | 0 => 1 | 1 => 0))))).tensor :=
|
||||
altRightMetric_expand
|
||||
|
||||
end complexLorentzTensor
|
Loading…
Add table
Add a link
Reference in a new issue