feat: More notes
This commit is contained in:
parent
256a1c3e94
commit
35445a5be6
5 changed files with 33 additions and 17 deletions
|
@ -423,10 +423,12 @@ lemma timeOrder_ofFieldOpList_singleton (φ : 𝓕.FieldOp) :
|
|||
𝓣(ofFieldOpList [φ]) = ofFieldOpList [φ] := by
|
||||
rw [ofFieldOpList, timeOrder_eq_ι_timeOrderF, timeOrderF_ofFieldOpListF_singleton]
|
||||
|
||||
/-- The time order of a list `𝓣(φ₀…φₙ)` is equal to
|
||||
`𝓢(φᵢ,φ₀…φᵢ₋₁) • φᵢ * 𝓣(φ₀…φᵢ₋₁φᵢ₊₁φₙ)` where `φᵢ` is the maximal time field in `φ₀…φₙ`-/
|
||||
lemma timeOrder_eq_maxTimeField_mul_finset (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) :
|
||||
𝓣(ofFieldOpList (φ :: φs)) = 𝓢(𝓕 |>ₛ maxTimeField φ φs, 𝓕 |>ₛ ⟨(eraseMaxTimeField φ φs).get,
|
||||
(Finset.filter (fun x =>
|
||||
(maxTimeFieldPosFin φ φs).succAbove x < maxTimeFieldPosFin φ φs) Finset.univ)⟩) •
|
||||
(Finset.univ.filter (fun x =>
|
||||
(maxTimeFieldPosFin φ φs).succAbove x < maxTimeFieldPosFin φ φs))⟩) •
|
||||
ofFieldOp (maxTimeField φ φs) * 𝓣(ofFieldOpList (eraseMaxTimeField φ φs)) := by
|
||||
rw [ofFieldOpList, timeOrder_eq_ι_timeOrderF, timeOrderF_eq_maxTimeField_mul_finset]
|
||||
rfl
|
||||
|
|
|
@ -50,12 +50,14 @@ remark naming_convention := "
|
|||
This is to avoid confusion when working within the context of `FieldOpAlgebra` which is defined
|
||||
as a quotient of `FieldOpFreeAlgebra`."
|
||||
|
||||
/-- Maps a creation and annihlation state to the creation and annihlation free-algebra. -/
|
||||
/-- For a field specification `𝓕`, the element of `𝓕.FieldOpFreeAlgebra` formed by a
|
||||
single `𝓕.CrAnFieldOp`. -/
|
||||
def ofCrAnOpF (φ : 𝓕.CrAnFieldOp) : FieldOpFreeAlgebra 𝓕 :=
|
||||
FreeAlgebra.ι ℂ φ
|
||||
|
||||
/-- Maps a list creation and annihlation state to the creation and annihlation free-algebra
|
||||
by taking their product. -/
|
||||
/-- For a field specification `𝓕`, `ofCrAnListF φs` of `𝓕.FieldOpFreeAlgebra` formed by a
|
||||
list `φs` of `𝓕.CrAnFieldOp`. For example for the list `[φ₁ᶜ, φ₂ᵃ, φ₃ᶜ]` we schematically
|
||||
get `φ₁ᶜφ₂ᵃφ₃ᶜ`. The set of all `ofCrAnListF φs` forms a basis of `FieldOpFreeAlgebra 𝓕`. -/
|
||||
def ofCrAnListF (φs : List 𝓕.CrAnFieldOp) : FieldOpFreeAlgebra 𝓕 := (List.map ofCrAnOpF φs).prod
|
||||
|
||||
@[simp]
|
||||
|
@ -71,14 +73,16 @@ lemma ofCrAnListF_append (φs φs' : List 𝓕.CrAnFieldOp) :
|
|||
lemma ofCrAnListF_singleton (φ : 𝓕.CrAnFieldOp) :
|
||||
ofCrAnListF [φ] = ofCrAnOpF φ := by simp [ofCrAnListF]
|
||||
|
||||
/-- Maps a state to the sum of creation and annihilation operators in
|
||||
creation and annihilation free-algebra. -/
|
||||
/-- For a field specification `𝓕`, the element of `𝓕.FieldOpFreeAlgebra` formed by a
|
||||
`𝓕.FieldOp` by summing over the creation and annihilation components of `𝓕.FieldOp`.
|
||||
For example for `φ₁` an incoming asymptotic field operator we get `φ₁ᶜ`, and for `φ₁` a
|
||||
position field operator we get `φ₁ᶜ + φ₁ᵃ`. -/
|
||||
def ofFieldOpF (φ : 𝓕.FieldOp) : FieldOpFreeAlgebra 𝓕 :=
|
||||
∑ (i : 𝓕.fieldOpToCrAnType φ), ofCrAnOpF ⟨φ, i⟩
|
||||
|
||||
/-- Maps a list of states to the creation and annihilation free-algebra by taking
|
||||
the product of their sums of creation and annihlation operators.
|
||||
Roughly `[φ1, φ2]` gets sent to `(φ1ᶜ+ φ1ᵃ) * (φ2ᶜ+ φ2ᵃ)` etc. -/
|
||||
/-- For a field specification `𝓕`, the element of `𝓕.FieldOpFreeAlgebra` formed by a
|
||||
list of `𝓕.FieldOp` by summing over the creation and annihilation components.
|
||||
For example, `φ₁` and `φ₂` position states `[φ1, φ2]` gets sent to `(φ1ᶜ+ φ1ᵃ) * (φ2ᶜ+ φ2ᵃ)`. -/
|
||||
def ofFieldOpListF (φs : List 𝓕.FieldOp) : FieldOpFreeAlgebra 𝓕 := (List.map ofFieldOpF φs).prod
|
||||
|
||||
/-- Coercion from `List 𝓕.FieldOp` to `FieldOpFreeAlgebra 𝓕` through `ofFieldOpListF`. -/
|
||||
|
|
|
@ -237,7 +237,9 @@ lemma directSum_eq_bosonic_plus_fermionic
|
|||
conv_lhs => rw [hx, hy]
|
||||
abel
|
||||
|
||||
/-- The instance of a graded algebra on `FieldOpFreeAlgebra`. -/
|
||||
/-- For a field statistic `𝓕`, the algebra `𝓕.FieldOpFreeAlgebra` is graded by `FieldStatistic`.
|
||||
Those `ofCrAnListF φs` for which `φs` has `bosonic` statistics form one part of the grading,
|
||||
whilst those where `φs` has `fermionic` statistics form the other part of the grading. -/
|
||||
instance fieldOpFreeAlgebraGrade :
|
||||
GradedAlgebra (A := 𝓕.FieldOpFreeAlgebra) statisticSubmodule where
|
||||
one_mem := by
|
||||
|
|
|
@ -23,18 +23,18 @@ namespace FieldOpFreeAlgebra
|
|||
|
||||
open FieldStatistic
|
||||
|
||||
/-- The super commutor on the creation and annihlation algebra. For two bosonic operators
|
||||
or a bosonic and fermionic operator this corresponds to the usual commutator
|
||||
whilst for two fermionic operators this corresponds to the anti-commutator. -/
|
||||
/-- For a field specification `𝓕`, the super commutator `superCommuteF` is defined as the linear
|
||||
map `𝓕.FieldOpFreeAlgebra →ₗ[ℂ] 𝓕.FieldOpFreeAlgebra →ₗ[ℂ] 𝓕.FieldOpFreeAlgebra` such that
|
||||
`superCommuteF (φ₀ᶜ…φₙᵃ) (φ₀'ᶜ…φₙ'ᶜ)` is equal to
|
||||
`φ₀ᶜ…φₙᵃ * φ₀'ᶜ…φₙ'ᶜ - 𝓢(φ₀ᶜ…φₙᵃ, φ₀'ᶜ…φₙ'ᶜ) φ₀'ᶜ…φₙ'ᶜ * φ₀ᶜ…φₙᵃ`.
|
||||
The notation `[a, b]ₛca` is used for this super commutator. -/
|
||||
noncomputable def superCommuteF : 𝓕.FieldOpFreeAlgebra →ₗ[ℂ] 𝓕.FieldOpFreeAlgebra →ₗ[ℂ]
|
||||
𝓕.FieldOpFreeAlgebra :=
|
||||
Basis.constr ofCrAnListFBasis ℂ fun φs =>
|
||||
Basis.constr ofCrAnListFBasis ℂ fun φs' =>
|
||||
ofCrAnListF (φs ++ φs') - 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofCrAnListF (φs' ++ φs)
|
||||
|
||||
/-- The super commutor on the creation and annihlation algebra. For two bosonic operators
|
||||
or a bosonic and fermionic operator this corresponds to the usual commutator
|
||||
whilst for two fermionic operators this corresponds to the anti-commutator. -/
|
||||
@[inherit_doc superCommuteF]
|
||||
scoped[FieldSpecification.FieldOpFreeAlgebra] notation "[" φs "," φs' "]ₛca" => superCommuteF φs φs'
|
||||
|
||||
/-!
|
||||
|
|
|
@ -137,6 +137,11 @@ def perturbationTheory : Note where
|
|||
.h2 "Field-operator free algebra",
|
||||
.name `FieldSpecification.FieldOpFreeAlgebra,
|
||||
.name `FieldSpecification.FieldOpFreeAlgebra.naming_convention,
|
||||
.name `FieldSpecification.FieldOpFreeAlgebra.ofCrAnOpF,
|
||||
.name `FieldSpecification.FieldOpFreeAlgebra.ofCrAnListF,
|
||||
.name `FieldSpecification.FieldOpFreeAlgebra.ofFieldOpF,
|
||||
.name `FieldSpecification.FieldOpFreeAlgebra.ofFieldOpListF,
|
||||
.name `FieldSpecification.FieldOpFreeAlgebra.fieldOpFreeAlgebraGrade,
|
||||
.name `FieldSpecification.FieldOpFreeAlgebra.superCommuteF,
|
||||
.h2 "Field-operator algebra",
|
||||
.name `FieldSpecification.FieldOpAlgebra,
|
||||
|
@ -146,6 +151,7 @@ def perturbationTheory : Note where
|
|||
.name `FieldSpecification.crAnTimeOrderSign,
|
||||
.name `FieldSpecification.FieldOpFreeAlgebra.timeOrderF,
|
||||
.name `FieldSpecification.FieldOpAlgebra.timeOrder,
|
||||
.name `FieldSpecification.FieldOpAlgebra.timeOrder_eq_maxTimeField_mul_finset,
|
||||
.h1 "Normal ordering",
|
||||
.name `FieldSpecification.normalOrderRel,
|
||||
.name `FieldSpecification.normalOrderSign,
|
||||
|
@ -169,6 +175,8 @@ def perturbationTheory : Note where
|
|||
.h2 "Cardinality",
|
||||
.name `WickContraction.card_eq_cardFun,
|
||||
.h1 "Time and static contractions",
|
||||
.h1 "Useful results",
|
||||
|
||||
.h1 "The three Wick's theorems",
|
||||
.name `FieldSpecification.wicks_theorem,
|
||||
.name `FieldSpecification.FieldOpAlgebra.static_wick_theorem,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue