fix: Typo
This commit is contained in:
parent
777a878d85
commit
35bab3197a
12 changed files with 21 additions and 21 deletions
822
HepLean/PerturbationTheory/FeynmanDiagrams/Basic.lean
Normal file
822
HepLean/PerturbationTheory/FeynmanDiagrams/Basic.lean
Normal file
|
@ -0,0 +1,822 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import Mathlib.Logic.Equiv.Fin
|
||||
import Mathlib.Tactic.FinCases
|
||||
import Mathlib.Data.Finset.Card
|
||||
import Mathlib.CategoryTheory.IsomorphismClasses
|
||||
import Mathlib.CategoryTheory.Functor.Category
|
||||
import Mathlib.CategoryTheory.Comma.Over
|
||||
import Mathlib.Data.Fintype.Pi
|
||||
import Mathlib.CategoryTheory.Limits.Shapes.Terminal
|
||||
import Mathlib.Data.Fintype.Prod
|
||||
import Mathlib.Data.Fintype.Perm
|
||||
import Mathlib.Combinatorics.SimpleGraph.Basic
|
||||
import Mathlib.Combinatorics.SimpleGraph.Connectivity.WalkCounting
|
||||
import Mathlib.SetTheory.Cardinal.Basic
|
||||
/-!
|
||||
# Feynman diagrams
|
||||
|
||||
Feynman diagrams are a graphical representation of the terms in the perturbation expansion of
|
||||
a quantum field theory.
|
||||
|
||||
-/
|
||||
|
||||
open CategoryTheory
|
||||
/-!
|
||||
|
||||
## The definition of Pre Feynman rules
|
||||
|
||||
We define the notion of a pre-Feynman rule, which specifies the possible
|
||||
half-edges, edges and vertices in a diagram. It does not specify how to turn a diagram
|
||||
into an algebraic expression.
|
||||
|
||||
## TODO
|
||||
Prove that the `halfEdgeLimit` functor lands on limits of functors.
|
||||
|
||||
-/
|
||||
|
||||
/-- A `PreFeynmanRule` is a set of rules specifying the allowed half-edges,
|
||||
edges and vertices in a diagram. (It does not specify how to turn the diagram
|
||||
into an algebraic expression.) -/
|
||||
structure PreFeynmanRule where
|
||||
/-- The type labelling the different types of half-edges. -/
|
||||
HalfEdgeLabel : Type
|
||||
/-- A type labelling the different types of edges. -/
|
||||
EdgeLabel : Type
|
||||
/-- A type labelling the different types of vertices. -/
|
||||
VertexLabel : Type
|
||||
/-- A function taking `EdgeLabels` to the half edges it contains.
|
||||
This will usually land on `Fin 2 → _` -/
|
||||
edgeLabelMap : EdgeLabel → CategoryTheory.Over HalfEdgeLabel
|
||||
/-- A function taking `VertexLabels` to the half edges it contains.
|
||||
For example, if the vertex is of order-3 it will land on `Fin 3 → _`. -/
|
||||
vertexLabelMap : VertexLabel → CategoryTheory.Over HalfEdgeLabel
|
||||
|
||||
namespace PreFeynmanRule
|
||||
|
||||
variable (P : PreFeynmanRule)
|
||||
|
||||
/-- The functor from `Over (P.HalfEdgeLabel × P.EdgeLabel × P.VertexLabel)`
|
||||
to `Over (P.VertexLabel)` induced by projections on products. -/
|
||||
def toVertex {𝓔 𝓥 : Type} : Over (P.HalfEdgeLabel × 𝓔 × 𝓥) ⥤ Over 𝓥 :=
|
||||
Over.map <| Prod.snd ∘ Prod.snd
|
||||
|
||||
/-- The functor from `Over (P.HalfEdgeLabel × P.EdgeLabel × P.VertexLabel)`
|
||||
to `Over (P.EdgeLabel)` induced by projections on products. -/
|
||||
@[simps! obj_left obj_hom map_left map_right]
|
||||
def toEdge {𝓔 𝓥 : Type} : Over (P.HalfEdgeLabel × 𝓔 × 𝓥) ⥤ Over 𝓔 :=
|
||||
Over.map <| Prod.fst ∘ Prod.snd
|
||||
|
||||
/-- The functor from `Over (P.HalfEdgeLabel × P.EdgeLabel × P.VertexLabel)`
|
||||
to `Over (P.HalfEdgeLabel)` induced by projections on products. -/
|
||||
@[simps! obj_left obj_hom map_left map_right]
|
||||
def toHalfEdge {𝓔 𝓥 : Type} : Over (P.HalfEdgeLabel × 𝓔 × 𝓥) ⥤ Over P.HalfEdgeLabel :=
|
||||
Over.map Prod.fst
|
||||
|
||||
/-- The functor from `Over P.VertexLabel` to `Type` induced by pull-back along insertion of
|
||||
`v : P.VertexLabel`. -/
|
||||
@[simps!]
|
||||
def preimageType' {𝓥 : Type} (v : 𝓥) : Over 𝓥 ⥤ Type where
|
||||
obj := fun f => f.hom ⁻¹' {v}
|
||||
map {f g} F := fun x =>
|
||||
⟨F.left x.1, by
|
||||
have h := congrFun F.w x
|
||||
simp only [Functor.const_obj_obj, Functor.id_obj, Functor.id_map, types_comp_apply,
|
||||
CostructuredArrow.right_eq_id, Functor.const_obj_map, types_id_apply] at h
|
||||
simp only [Functor.id_obj, Functor.const_obj_obj, Set.mem_preimage, Set.mem_singleton_iff]
|
||||
obtain ⟨val, property⟩ := x
|
||||
simp_all only
|
||||
simp_all only [Functor.id_obj, Functor.const_obj_obj, Set.mem_preimage,
|
||||
Set.mem_singleton_iff]⟩
|
||||
|
||||
/-- The functor from `Over (P.HalfEdgeLabel × 𝓔 × 𝓥)` to
|
||||
`Over P.HalfEdgeLabel` induced by pull-back along insertion of `v : P.VertexLabel`.
|
||||
For a given vertex, it returns all half edges corresponding to that vertex. -/
|
||||
def preimageVertex {𝓔 𝓥 : Type} (v : 𝓥) :
|
||||
Over (P.HalfEdgeLabel × 𝓔 × 𝓥) ⥤ Over P.HalfEdgeLabel where
|
||||
obj f := Over.mk (fun x => Prod.fst (f.hom x.1) :
|
||||
(P.toVertex ⋙ preimageType' v).obj f ⟶ P.HalfEdgeLabel)
|
||||
map {f g} F := Over.homMk ((P.toVertex ⋙ preimageType' v).map F)
|
||||
(funext <| fun x => congrArg Prod.fst <| congrFun F.w x.1)
|
||||
|
||||
/-- The functor from `Over (P.HalfEdgeLabel × P.EdgeLabel × P.VertexLabel)` to
|
||||
`Over P.HalfEdgeLabel` induced by pull-back along insertion of `v : P.EdgeLabel`.
|
||||
For a given edge, it returns all half edges corresponding to that edge. -/
|
||||
def preimageEdge {𝓔 𝓥 : Type} (v : 𝓔) :
|
||||
Over (P.HalfEdgeLabel × 𝓔 × 𝓥) ⥤ Over P.HalfEdgeLabel where
|
||||
obj f := Over.mk (fun x => Prod.fst (f.hom x.1) :
|
||||
(P.toEdge ⋙ preimageType' v).obj f ⟶ P.HalfEdgeLabel)
|
||||
map {f g} F := Over.homMk ((P.toEdge ⋙ preimageType' v).map F)
|
||||
(funext <| fun x => congrArg Prod.fst <| congrFun F.w x.1)
|
||||
|
||||
/-!
|
||||
|
||||
## Finitness of pre-Feynman rules
|
||||
|
||||
We define a class of `PreFeynmanRule` which have nice properties with regard to
|
||||
decidablity and finitness.
|
||||
|
||||
In practice, every pre-Feynman rule considered in the physics literature satisfies these
|
||||
properties.
|
||||
|
||||
-/
|
||||
|
||||
/-- A set of conditions on `PreFeynmanRule` for it to be considered finite. -/
|
||||
class IsFinitePreFeynmanRule (P : PreFeynmanRule) where
|
||||
/-- The type of edge labels is decidable. -/
|
||||
edgeLabelDecidable : DecidableEq P.EdgeLabel
|
||||
/-- The type of vertex labels is decidable. -/
|
||||
vertexLabelDecidable : DecidableEq P.VertexLabel
|
||||
/-- The type of half-edge labels is decidable. -/
|
||||
halfEdgeLabelDecidable : DecidableEq P.HalfEdgeLabel
|
||||
/-- The type of half-edges associated with a vertex is finite. -/
|
||||
vertexMapFintype : ∀ v : P.VertexLabel, Fintype (P.vertexLabelMap v).left
|
||||
/-- The type of half-edges associated with a vertex is decidable. -/
|
||||
vertexMapDecidable : ∀ v : P.VertexLabel, DecidableEq (P.vertexLabelMap v).left
|
||||
/-- The type of half-edges associated with an edge is finite. -/
|
||||
edgeMapFintype : ∀ v : P.EdgeLabel, Fintype (P.edgeLabelMap v).left
|
||||
/-- The type of half-edges associated with an edge is decidable. -/
|
||||
edgeMapDecidable : ∀ v : P.EdgeLabel, DecidableEq (P.edgeLabelMap v).left
|
||||
|
||||
/-- If `P` is a finite pre feynman rule, then equality of edge labels of `P` is decidable. -/
|
||||
instance preFeynmanRuleDecEq𝓔 (P : PreFeynmanRule) [IsFinitePreFeynmanRule P] :
|
||||
DecidableEq P.EdgeLabel :=
|
||||
IsFinitePreFeynmanRule.edgeLabelDecidable
|
||||
|
||||
/-- If `P` is a finite pre feynman rule, then equality of vertex labels of `P` is decidable. -/
|
||||
instance preFeynmanRuleDecEq𝓥 (P : PreFeynmanRule) [IsFinitePreFeynmanRule P] :
|
||||
DecidableEq P.VertexLabel :=
|
||||
IsFinitePreFeynmanRule.vertexLabelDecidable
|
||||
|
||||
/-- If `P` is a finite pre feynman rule, then equality of half-edge labels of `P` is decidable. -/
|
||||
instance preFeynmanRuleDecEq𝓱𝓔 (P : PreFeynmanRule) [IsFinitePreFeynmanRule P] :
|
||||
DecidableEq P.HalfEdgeLabel :=
|
||||
IsFinitePreFeynmanRule.halfEdgeLabelDecidable
|
||||
|
||||
/-- If `P` is a finite pre-feynman rule, then every vertex has a finite
|
||||
number of half-edges associated to it. -/
|
||||
instance [IsFinitePreFeynmanRule P] (v : P.VertexLabel) : Fintype (P.vertexLabelMap v).left :=
|
||||
IsFinitePreFeynmanRule.vertexMapFintype v
|
||||
|
||||
/-- If `P` is a finite pre-feynman rule, then the indexing set of half-edges associated
|
||||
to a vertex is decidable. -/
|
||||
instance [IsFinitePreFeynmanRule P] (v : P.VertexLabel) : DecidableEq (P.vertexLabelMap v).left :=
|
||||
IsFinitePreFeynmanRule.vertexMapDecidable v
|
||||
|
||||
/-- If `P` is a finite pre-feynman rule, then every edge has a finite
|
||||
number of half-edges associated to it. -/
|
||||
instance [IsFinitePreFeynmanRule P] (v : P.EdgeLabel) : Fintype (P.edgeLabelMap v).left :=
|
||||
IsFinitePreFeynmanRule.edgeMapFintype v
|
||||
|
||||
/-- If `P` is a finite pre-feynman rule, then the indexing set of half-edges associated
|
||||
to an edge is decidable. -/
|
||||
instance [IsFinitePreFeynmanRule P] (v : P.EdgeLabel) : DecidableEq (P.edgeLabelMap v).left :=
|
||||
IsFinitePreFeynmanRule.edgeMapDecidable v
|
||||
|
||||
/-- It is decidable to check whether a half edge of a diagram (an object in
|
||||
`Over (P.HalfEdgeLabel × 𝓔 × 𝓥)`) corresponds to a given vertex. -/
|
||||
instance preimageVertexDecidablePred {𝓔 𝓥 : Type} [DecidableEq 𝓥] (v : 𝓥)
|
||||
(F : Over (P.HalfEdgeLabel × 𝓔 × 𝓥)) :
|
||||
DecidablePred fun x => x ∈ (P.toVertex.obj F).hom ⁻¹' {v} := fun y =>
|
||||
match decEq ((P.toVertex.obj F).hom y) v with
|
||||
| isTrue h => isTrue h
|
||||
| isFalse h => isFalse h
|
||||
|
||||
/-- It is decidable to check whether a half edge of a diagram (an object in
|
||||
`Over (P.HalfEdgeLabel × 𝓔 × 𝓥)`) corresponds to a given edge. -/
|
||||
instance preimageEdgeDecidablePred {𝓔 𝓥 : Type} [DecidableEq 𝓔] (v : 𝓔)
|
||||
(F : Over (P.HalfEdgeLabel × 𝓔 × 𝓥)) :
|
||||
DecidablePred fun x => x ∈ (P.toEdge.obj F).hom ⁻¹' {v} := fun y =>
|
||||
match decEq ((P.toEdge.obj F).hom y) v with
|
||||
| isTrue h => isTrue h
|
||||
| isFalse h => isFalse h
|
||||
|
||||
/-- If `F` is an object in `Over (P.HalfEdgeLabel × 𝓔 × 𝓥)`, with a decidable source,
|
||||
then the object in `Over P.HalfEdgeLabel` formed by following the functor `preimageVertex`
|
||||
has a decidable source (since it is the same source). -/
|
||||
instance preimageVertexDecidable {𝓔 𝓥 : Type} (v : 𝓥)
|
||||
(F : Over (P.HalfEdgeLabel × 𝓔 × 𝓥)) [DecidableEq F.left] :
|
||||
DecidableEq ((P.preimageVertex v).obj F).left := Subtype.instDecidableEq
|
||||
|
||||
/-- The half edges corresponding to a given edge has an indexing set which is decidable. -/
|
||||
instance preimageEdgeDecidable {𝓔 𝓥 : Type} (v : 𝓔)
|
||||
(F : Over (P.HalfEdgeLabel × 𝓔 × 𝓥)) [DecidableEq F.left] :
|
||||
DecidableEq ((P.preimageEdge v).obj F).left := Subtype.instDecidableEq
|
||||
|
||||
/-- The half edges corresponding to a given vertex has an indexing set which is decidable. -/
|
||||
instance preimageVertexFintype {𝓔 𝓥 : Type} [DecidableEq 𝓥]
|
||||
(v : 𝓥) (F : Over (P.HalfEdgeLabel × 𝓔 × 𝓥)) [h : Fintype F.left] :
|
||||
Fintype ((P.preimageVertex v).obj F).left := @Subtype.fintype _ _ _ h
|
||||
|
||||
/-- The half edges corresponding to a given edge has an indexing set which is finite. -/
|
||||
instance preimageEdgeFintype {𝓔 𝓥 : Type} [DecidableEq 𝓔]
|
||||
(v : 𝓔) (F : Over (P.HalfEdgeLabel × 𝓔 × 𝓥)) [h : Fintype F.left] :
|
||||
Fintype ((P.preimageEdge v).obj F).left := @Subtype.fintype _ _ _ h
|
||||
|
||||
/-- The half edges corresponding to a given vertex has an indexing set which is finite. -/
|
||||
instance preimageVertexMapFintype [IsFinitePreFeynmanRule P] {𝓔 𝓥 : Type}
|
||||
[DecidableEq 𝓥] (v : 𝓥) (f : 𝓥 ⟶ P.VertexLabel) (F : Over (P.HalfEdgeLabel × 𝓔 × 𝓥))
|
||||
[Fintype F.left] :
|
||||
Fintype ((P.vertexLabelMap (f v)).left → ((P.preimageVertex v).obj F).left) :=
|
||||
Pi.fintype
|
||||
|
||||
/-- Given an edge, there is a finite number of maps between the indexing set of the
|
||||
expected half-edges corresponding to that edges label, and the actual indexing
|
||||
set of half-edges corresponding to that edge. Given various finiteness conditions. -/
|
||||
instance preimageEdgeMapFintype [IsFinitePreFeynmanRule P] {𝓔 𝓥 : Type}
|
||||
[DecidableEq 𝓔] (v : 𝓔) (f : 𝓔 ⟶ P.EdgeLabel) (F : Over (P.HalfEdgeLabel × 𝓔 × 𝓥))
|
||||
[Fintype F.left] :
|
||||
Fintype ((P.edgeLabelMap (f v)).left → ((P.preimageEdge v).obj F).left) :=
|
||||
Pi.fintype
|
||||
|
||||
/-!
|
||||
|
||||
## External and internal Vertices
|
||||
|
||||
We say a vertex Label is `external` if it has only one half-edge associated with it.
|
||||
Otherwise, we say it is `internal`.
|
||||
|
||||
We will show that for `IsFinitePreFeynmanRule` the condition of been external is decidable.
|
||||
-/
|
||||
|
||||
/-- A vertex is external if it has a single half-edge associated to it. -/
|
||||
def External {P : PreFeynmanRule} (v : P.VertexLabel) : Prop :=
|
||||
IsIsomorphic (P.vertexLabelMap v).left (Fin 1)
|
||||
|
||||
lemma external_iff_exists_bijection {P : PreFeynmanRule} (v : P.VertexLabel) :
|
||||
External v ↔ ∃ (κ : (P.vertexLabelMap v).left → Fin 1), Function.Bijective κ := by
|
||||
refine Iff.intro (fun h => ?_) (fun h => ?_)
|
||||
· obtain ⟨κ, κm1, h1, h2⟩ := h
|
||||
let f : (P.vertexLabelMap v).left ≅ (Fin 1) := ⟨κ, κm1, h1, h2⟩
|
||||
exact ⟨f.hom, (isIso_iff_bijective f.hom).mp $ Iso.isIso_hom f⟩
|
||||
· obtain ⟨κ, h1⟩ := h
|
||||
let f : (P.vertexLabelMap v).left ⟶ (Fin 1) := κ
|
||||
have ft : IsIso f := (isIso_iff_bijective κ).mpr h1
|
||||
obtain ⟨fm, hf1, hf2⟩ := ft
|
||||
exact ⟨f, fm, hf1, hf2⟩
|
||||
|
||||
/-- Whether or not a vertex is external is decidable. -/
|
||||
instance externalDecidable [IsFinitePreFeynmanRule P] (v : P.VertexLabel) :
|
||||
Decidable (External v) :=
|
||||
decidable_of_decidable_of_iff (external_iff_exists_bijection v).symm
|
||||
|
||||
/-!
|
||||
|
||||
## Conditions to form a diagram.
|
||||
|
||||
-/
|
||||
|
||||
/-- The proposition on vertices which must be satisfied by an object
|
||||
`F : Over (P.HalfEdgeLabel × P.EdgeLabel × P.VertexLabel)` for it to be a Feynman diagram.
|
||||
This condition corresponds to the vertices of `F` having the correct half-edges associated
|
||||
with them. -/
|
||||
def DiagramVertexProp {𝓔 𝓥 : Type} (F : Over (P.HalfEdgeLabel × 𝓔 × 𝓥))
|
||||
(f : 𝓥 ⟶ P.VertexLabel) :=
|
||||
∀ v, IsIsomorphic (P.vertexLabelMap (f v)) ((P.preimageVertex v).obj F)
|
||||
|
||||
/-- The proposition on edges which must be satisfied by an object
|
||||
`F : Over (P.HalfEdgeLabel × P.EdgeLabel × P.VertexLabel)` for it to be a Feynman diagram.
|
||||
This condition corresponds to the edges of `F` having the correct half-edges associated
|
||||
with them. -/
|
||||
def DiagramEdgeProp {𝓔 𝓥 : Type} (F : Over (P.HalfEdgeLabel × 𝓔 × 𝓥))
|
||||
(f : 𝓔 ⟶ P.EdgeLabel) :=
|
||||
∀ v, IsIsomorphic (P.edgeLabelMap (f v)) ((P.preimageEdge v).obj F)
|
||||
|
||||
lemma diagramVertexProp_iff {𝓔 𝓥 : Type} (F : Over (P.HalfEdgeLabel × 𝓔 × 𝓥))
|
||||
(f : 𝓥 ⟶ P.VertexLabel) : P.DiagramVertexProp F f ↔
|
||||
∀ v, ∃ (κ : (P.vertexLabelMap (f v)).left → ((P.preimageVertex v).obj F).left),
|
||||
Function.Bijective κ
|
||||
∧ ((P.preimageVertex v).obj F).hom ∘ κ = (P.vertexLabelMap (f v)).hom := by
|
||||
refine Iff.intro (fun h v => ?_) (fun h v => ?_)
|
||||
· obtain ⟨κ, κm1, h1, h2⟩ := h v
|
||||
let f := (Over.forget P.HalfEdgeLabel).mapIso ⟨κ, κm1, h1, h2⟩
|
||||
exact ⟨f.hom, (isIso_iff_bijective f.hom).mp $ Iso.isIso_hom f, κ.w⟩
|
||||
· obtain ⟨κ, h1, h2⟩ := h v
|
||||
let f : (P.vertexLabelMap (f v)) ⟶ ((P.preimageVertex v).obj F) := Over.homMk κ h2
|
||||
have ft : IsIso ((Over.forget P.HalfEdgeLabel).map f) := (isIso_iff_bijective κ).mpr h1
|
||||
obtain ⟨fm, hf1, hf2⟩ := (isIso_of_reflects_iso _ (Over.forget P.HalfEdgeLabel) : IsIso f)
|
||||
exact ⟨f, fm, hf1, hf2⟩
|
||||
|
||||
lemma diagramEdgeProp_iff {𝓔 𝓥 : Type} (F : Over (P.HalfEdgeLabel × 𝓔 × 𝓥))
|
||||
(f : 𝓔 ⟶ P.EdgeLabel) : P.DiagramEdgeProp F f ↔
|
||||
∀ v, ∃ (κ : (P.edgeLabelMap (f v)).left → ((P.preimageEdge v).obj F).left),
|
||||
Function.Bijective κ
|
||||
∧ ((P.preimageEdge v).obj F).hom ∘ κ = (P.edgeLabelMap (f v)).hom := by
|
||||
refine Iff.intro (fun h v => ?_) (fun h v => ?_)
|
||||
· obtain ⟨κ, κm1, h1, h2⟩ := h v
|
||||
let f := (Over.forget P.HalfEdgeLabel).mapIso ⟨κ, κm1, h1, h2⟩
|
||||
exact ⟨f.hom, (isIso_iff_bijective f.hom).mp $ Iso.isIso_hom f, κ.w⟩
|
||||
· obtain ⟨κ, h1, h2⟩ := h v
|
||||
let f : (P.edgeLabelMap (f v)) ⟶ ((P.preimageEdge v).obj F) := Over.homMk κ h2
|
||||
have ft : IsIso ((Over.forget P.HalfEdgeLabel).map f) := (isIso_iff_bijective κ).mpr h1
|
||||
obtain ⟨fm, hf1, hf2⟩ := (isIso_of_reflects_iso _ (Over.forget P.HalfEdgeLabel) : IsIso f)
|
||||
exact ⟨f, fm, hf1, hf2⟩
|
||||
|
||||
/-- The proposition `DiagramVertexProp` is decidable given various decidablity and finite
|
||||
conditions. -/
|
||||
instance diagramVertexPropDecidable
|
||||
[IsFinitePreFeynmanRule P] {𝓔 𝓥 : Type} [Fintype 𝓥] [DecidableEq 𝓥]
|
||||
(F : Over (P.HalfEdgeLabel × 𝓔 × 𝓥)) [DecidableEq F.left] [Fintype F.left]
|
||||
(f : 𝓥 ⟶ P.VertexLabel) : Decidable (P.DiagramVertexProp F f) :=
|
||||
@decidable_of_decidable_of_iff _ _
|
||||
(@Fintype.decidableForallFintype _ _ (fun _ => @Fintype.decidableExistsFintype _ _
|
||||
(fun _ => @instDecidableAnd _ _ _ (@Fintype.decidablePiFintype _ _
|
||||
(fun _ => P.preFeynmanRuleDecEq𝓱𝓔) _ _ _)) _) _)
|
||||
(P.diagramVertexProp_iff F f).symm
|
||||
|
||||
/-- The proposition `DiagramEdgeProp` is decidable given various decidablity and finite
|
||||
conditions. -/
|
||||
instance diagramEdgePropDecidable
|
||||
[IsFinitePreFeynmanRule P] {𝓔 𝓥 : Type} [Fintype 𝓔] [DecidableEq 𝓔]
|
||||
(F : Over (P.HalfEdgeLabel × 𝓔 × 𝓥)) [DecidableEq F.left] [Fintype F.left]
|
||||
(f : 𝓔 ⟶ P.EdgeLabel) : Decidable (P.DiagramEdgeProp F f) :=
|
||||
@decidable_of_decidable_of_iff _ _
|
||||
(@Fintype.decidableForallFintype _ _ (fun _ => @Fintype.decidableExistsFintype _ _
|
||||
(fun _ => @instDecidableAnd _ _ _ (@Fintype.decidablePiFintype _ _
|
||||
(fun _ => P.preFeynmanRuleDecEq𝓱𝓔) _ _ _)) _) _)
|
||||
(P.diagramEdgeProp_iff F f).symm
|
||||
|
||||
end PreFeynmanRule
|
||||
|
||||
/-!
|
||||
|
||||
## The definition of Feynman diagrams
|
||||
|
||||
We now define the type of Feynman diagrams for a given pre-Feynman rule.
|
||||
|
||||
-/
|
||||
|
||||
open PreFeynmanRule
|
||||
|
||||
/-- The type of Feynman diagrams given a `PreFeynmanRule`. -/
|
||||
structure FeynmanDiagram (P : PreFeynmanRule) where
|
||||
/-- The type of edges in the Feynman diagram, labelled by their type. -/
|
||||
𝓔𝓞 : Over P.EdgeLabel
|
||||
/-- The type of vertices in the Feynman diagram, labelled by their type. -/
|
||||
𝓥𝓞 : Over P.VertexLabel
|
||||
/-- The type of half-edges in the Feynman diagram, labelled by their type, the edge it
|
||||
belongs to, and the vertex they belong to. -/
|
||||
𝓱𝓔To𝓔𝓥 : Over (P.HalfEdgeLabel × 𝓔𝓞.left × 𝓥𝓞.left)
|
||||
/-- Each edge has the correct type of half edges. -/
|
||||
𝓔Cond : P.DiagramEdgeProp 𝓱𝓔To𝓔𝓥 𝓔𝓞.hom
|
||||
/-- Each vertex has the correct sort of half edges. -/
|
||||
𝓥Cond : P.DiagramVertexProp 𝓱𝓔To𝓔𝓥 𝓥𝓞.hom
|
||||
|
||||
namespace FeynmanDiagram
|
||||
|
||||
variable {P : PreFeynmanRule} (F : FeynmanDiagram P)
|
||||
|
||||
/-- The type of edges. -/
|
||||
def 𝓔 : Type := F.𝓔𝓞.left
|
||||
|
||||
/-- The type of vertices. -/
|
||||
def 𝓥 : Type := F.𝓥𝓞.left
|
||||
|
||||
/-- The type of half-edges. -/
|
||||
def 𝓱𝓔 : Type := F.𝓱𝓔To𝓔𝓥.left
|
||||
|
||||
/-- The object in Over P.HalfEdgeLabel generated by a Feynman diagram. -/
|
||||
def 𝓱𝓔𝓞 : Over P.HalfEdgeLabel := P.toHalfEdge.obj F.𝓱𝓔To𝓔𝓥
|
||||
|
||||
/-- The map `F.𝓱𝓔 → F.𝓔` as an object in `Over F.𝓔 `. -/
|
||||
def 𝓱𝓔To𝓔 : Over F.𝓔 := P.toEdge.obj F.𝓱𝓔To𝓔𝓥
|
||||
|
||||
/-- The map `F.𝓱𝓔 → F.𝓥` as an object in `Over F.𝓥 `. -/
|
||||
def 𝓱𝓔To𝓥 : Over F.𝓥 := P.toVertex.obj F.𝓱𝓔To𝓔𝓥
|
||||
|
||||
/-!
|
||||
|
||||
## Making a Feynman diagram
|
||||
|
||||
-/
|
||||
|
||||
/-- The condition which must be satisfied by maps to form a Feynman diagram. -/
|
||||
def Cond {𝓔 𝓥 𝓱𝓔 : Type} (𝓔𝓞 : 𝓔 → P.EdgeLabel) (𝓥𝓞 : 𝓥 → P.VertexLabel)
|
||||
(𝓱𝓔To𝓔𝓥 : 𝓱𝓔 → P.HalfEdgeLabel × 𝓔 × 𝓥) : Prop :=
|
||||
P.DiagramEdgeProp (Over.mk 𝓱𝓔To𝓔𝓥) 𝓔𝓞 ∧
|
||||
P.DiagramVertexProp (Over.mk 𝓱𝓔To𝓔𝓥) 𝓥𝓞
|
||||
|
||||
lemma cond_self : Cond F.𝓔𝓞.hom F.𝓥𝓞.hom F.𝓱𝓔To𝓔𝓥.hom :=
|
||||
⟨F.𝓔Cond, F.𝓥Cond⟩
|
||||
|
||||
/-- `Cond` is decidable. -/
|
||||
instance CondDecidable [IsFinitePreFeynmanRule P] {𝓔 𝓥 𝓱𝓔 : Type} (𝓔𝓞 : 𝓔 → P.EdgeLabel)
|
||||
(𝓥𝓞 : 𝓥 → P.VertexLabel)
|
||||
(𝓱𝓔To𝓔𝓥 : 𝓱𝓔 → P.HalfEdgeLabel × 𝓔 × 𝓥)
|
||||
[Fintype 𝓥] [DecidableEq 𝓥] [Fintype 𝓔] [DecidableEq 𝓔] [h : Fintype 𝓱𝓔] [DecidableEq 𝓱𝓔] :
|
||||
Decidable (Cond 𝓔𝓞 𝓥𝓞 𝓱𝓔To𝓔𝓥) :=
|
||||
@instDecidableAnd _ _
|
||||
(@diagramEdgePropDecidable P _ _ _ _ _ (Over.mk 𝓱𝓔To𝓔𝓥) _ h 𝓔𝓞)
|
||||
(@diagramVertexPropDecidable P _ _ _ _ _ (Over.mk 𝓱𝓔To𝓔𝓥) _ h 𝓥𝓞)
|
||||
|
||||
/-- Making a Feynman diagram from maps of edges, vertices and half-edges. -/
|
||||
def mk' {𝓔 𝓥 𝓱𝓔 : Type} (𝓔𝓞 : 𝓔 → P.EdgeLabel) (𝓥𝓞 : 𝓥 → P.VertexLabel)
|
||||
(𝓱𝓔To𝓔𝓥 : 𝓱𝓔 → P.HalfEdgeLabel × 𝓔 × 𝓥)
|
||||
(C : Cond 𝓔𝓞 𝓥𝓞 𝓱𝓔To𝓔𝓥) : FeynmanDiagram P where
|
||||
𝓔𝓞 := Over.mk 𝓔𝓞
|
||||
𝓥𝓞 := Over.mk 𝓥𝓞
|
||||
𝓱𝓔To𝓔𝓥 := Over.mk 𝓱𝓔To𝓔𝓥
|
||||
𝓔Cond := C.1
|
||||
𝓥Cond := C.2
|
||||
|
||||
lemma mk'_self : mk' F.𝓔𝓞.hom F.𝓥𝓞.hom F.𝓱𝓔To𝓔𝓥.hom F.cond_self = F := rfl
|
||||
|
||||
/-!
|
||||
|
||||
## Finitness of Feynman diagrams
|
||||
|
||||
As defined above our Feynman diagrams can have non-finite Types of half-edges etc.
|
||||
We define the class of those Feynman diagrams which are `finite` in the appropriate sense.
|
||||
In practice, every Feynman diagram considered in the physics literature is `finite`.
|
||||
|
||||
This finiteness condition will be used to prove certain `Types` are `Fintype`, and prove
|
||||
that certain propositions are decidable.
|
||||
|
||||
-/
|
||||
|
||||
/-- A set of conditions on a Feynman diagram for it to be considered finite. -/
|
||||
class IsFiniteDiagram (F : FeynmanDiagram P) where
|
||||
/-- The type of edges is finite. -/
|
||||
𝓔Fintype : Fintype F.𝓔
|
||||
/-- The type of edges is decidable. -/
|
||||
𝓔DecidableEq : DecidableEq F.𝓔
|
||||
/-- The type of vertices is finite. -/
|
||||
𝓥Fintype : Fintype F.𝓥
|
||||
/-- The type of vertices is decidable. -/
|
||||
𝓥DecidableEq : DecidableEq F.𝓥
|
||||
/-- The type of half-edges is finite. -/
|
||||
𝓱𝓔Fintype : Fintype F.𝓱𝓔
|
||||
/-- The type of half-edges is decidable. -/
|
||||
𝓱𝓔DecidableEq : DecidableEq F.𝓱𝓔
|
||||
|
||||
/-- The instance of a finite diagram given explicit finiteness and decidable conditions
|
||||
on the various maps making it up. -/
|
||||
instance {𝓔 𝓥 𝓱𝓔 : Type} [h1 : Fintype 𝓔] [h2 : DecidableEq 𝓔]
|
||||
[h3 : Fintype 𝓥] [h4 : DecidableEq 𝓥] [h5 : Fintype 𝓱𝓔] [h6 : DecidableEq 𝓱𝓔]
|
||||
(𝓔𝓞 : 𝓔 → P.EdgeLabel) (𝓥𝓞 : 𝓥 → P.VertexLabel)
|
||||
(𝓱𝓔To𝓔𝓥 : 𝓱𝓔 → P.HalfEdgeLabel × 𝓔 × 𝓥) (C : Cond 𝓔𝓞 𝓥𝓞 𝓱𝓔To𝓔𝓥) :
|
||||
IsFiniteDiagram (mk' 𝓔𝓞 𝓥𝓞 𝓱𝓔To𝓔𝓥 C) :=
|
||||
⟨h1, h2, h3, h4, h5, h6⟩
|
||||
|
||||
/-- If `F` is a finite Feynman diagram, then its edges are finite. -/
|
||||
instance {F : FeynmanDiagram P} [IsFiniteDiagram F] : Fintype F.𝓔 :=
|
||||
IsFiniteDiagram.𝓔Fintype
|
||||
|
||||
/-- If `F` is a finite Feynman diagram, then its edges are decidable. -/
|
||||
instance {F : FeynmanDiagram P} [IsFiniteDiagram F] : DecidableEq F.𝓔 :=
|
||||
IsFiniteDiagram.𝓔DecidableEq
|
||||
|
||||
/-- If `F` is a finite Feynman diagram, then its vertices are finite. -/
|
||||
instance {F : FeynmanDiagram P} [IsFiniteDiagram F] : Fintype F.𝓥 :=
|
||||
IsFiniteDiagram.𝓥Fintype
|
||||
|
||||
/-- If `F` is a finite Feynman diagram, then its vertices are decidable. -/
|
||||
instance {F : FeynmanDiagram P} [IsFiniteDiagram F] : DecidableEq F.𝓥 :=
|
||||
IsFiniteDiagram.𝓥DecidableEq
|
||||
|
||||
/-- If `F` is a finite Feynman diagram, then its half-edges are finite. -/
|
||||
instance {F : FeynmanDiagram P} [IsFiniteDiagram F] : Fintype F.𝓱𝓔 :=
|
||||
IsFiniteDiagram.𝓱𝓔Fintype
|
||||
|
||||
/-- If `F` is a finite Feynman diagram, then its half-edges are decidable. -/
|
||||
instance {F : FeynmanDiagram P} [IsFiniteDiagram F] : DecidableEq F.𝓱𝓔 :=
|
||||
IsFiniteDiagram.𝓱𝓔DecidableEq
|
||||
|
||||
/-- The proposition of whether the given an half-edge and an edge,
|
||||
the edge corresponding to the half edges is the given edge is decidable. -/
|
||||
instance {F : FeynmanDiagram P} [IsFiniteDiagram F] (i : F.𝓱𝓔) (j : F.𝓔) :
|
||||
Decidable (F.𝓱𝓔To𝓔.hom i = j) := IsFiniteDiagram.𝓔DecidableEq (F.𝓱𝓔To𝓔.hom i) j
|
||||
|
||||
/-- For a finite feynman diagram, the type of half edge lables, edges and vertices
|
||||
is decidable. -/
|
||||
instance fintypeProdHalfEdgeLabel𝓔𝓥 {F : FeynmanDiagram P} [IsFinitePreFeynmanRule P]
|
||||
[IsFiniteDiagram F] : DecidableEq (P.HalfEdgeLabel × F.𝓔 × F.𝓥) :=
|
||||
instDecidableEqProd
|
||||
|
||||
/-!
|
||||
|
||||
## Morphisms of Feynman diagrams
|
||||
|
||||
We define a morphism between Feynman diagrams, and properties thereof.
|
||||
This will be used to define the category of Feynman diagrams.
|
||||
|
||||
-/
|
||||
|
||||
/-- Given two maps `F.𝓔 ⟶ G.𝓔` and `F.𝓥 ⟶ G.𝓥` the corresponding map
|
||||
`P.HalfEdgeLabel × F.𝓔 × F.𝓥 → P.HalfEdgeLabel × G.𝓔 × G.𝓥`. -/
|
||||
@[simps!]
|
||||
def edgeVertexMap {F G : FeynmanDiagram P} (𝓔 : F.𝓔 ⟶ G.𝓔) (𝓥 : F.𝓥 ⟶ G.𝓥) :
|
||||
P.HalfEdgeLabel × F.𝓔 × F.𝓥 → P.HalfEdgeLabel × G.𝓔 × G.𝓥 :=
|
||||
fun x => ⟨x.1, 𝓔 x.2.1, 𝓥 x.2.2⟩
|
||||
|
||||
/-- Given equivalences `F.𝓔 ≃ G.𝓔` and `F.𝓥 ≃ G.𝓥`, the induced equivalence between
|
||||
`P.HalfEdgeLabel × F.𝓔 × F.𝓥` and `P.HalfEdgeLabel × G.𝓔 × G.𝓥 ` -/
|
||||
def edgeVertexEquiv {F G : FeynmanDiagram P} (𝓔 : F.𝓔 ≃ G.𝓔) (𝓥 : F.𝓥 ≃ G.𝓥) :
|
||||
P.HalfEdgeLabel × F.𝓔 × F.𝓥 ≃ P.HalfEdgeLabel × G.𝓔 × G.𝓥 where
|
||||
toFun := edgeVertexMap 𝓔.toFun 𝓥.toFun
|
||||
invFun := edgeVertexMap 𝓔.invFun 𝓥.invFun
|
||||
left_inv := by aesop_cat
|
||||
right_inv := by aesop_cat
|
||||
|
||||
/-- The functor of over-categories generated by `edgeVertexMap`. -/
|
||||
@[simps! obj_left obj_hom map_left map_right]
|
||||
def edgeVertexFunc {F G : FeynmanDiagram P} (𝓔 : F.𝓔 ⟶ G.𝓔) (𝓥 : F.𝓥 ⟶ G.𝓥) :
|
||||
Over (P.HalfEdgeLabel × F.𝓔 × F.𝓥) ⥤ Over (P.HalfEdgeLabel × G.𝓔 × G.𝓥) :=
|
||||
Over.map <| edgeVertexMap 𝓔 𝓥
|
||||
|
||||
/-- A morphism of Feynman diagrams. -/
|
||||
structure Hom (F G : FeynmanDiagram P) where
|
||||
/-- The morphism of edge objects. -/
|
||||
𝓔𝓞 : F.𝓔𝓞 ⟶ G.𝓔𝓞
|
||||
/-- The morphism of vertex objects. -/
|
||||
𝓥𝓞 : F.𝓥𝓞 ⟶ G.𝓥𝓞
|
||||
/-- The morphism of half-edge objects. -/
|
||||
𝓱𝓔To𝓔𝓥 : (edgeVertexFunc 𝓔𝓞.left 𝓥𝓞.left).obj F.𝓱𝓔To𝓔𝓥 ⟶ G.𝓱𝓔To𝓔𝓥
|
||||
|
||||
namespace Hom
|
||||
variable {F G : FeynmanDiagram P}
|
||||
variable (f : Hom F G)
|
||||
|
||||
/-- The map `F.𝓔 → G.𝓔` induced by a homomorphism of Feynman diagrams. -/
|
||||
@[simp]
|
||||
def 𝓔 : F.𝓔 → G.𝓔 := f.𝓔𝓞.left
|
||||
|
||||
/-- The map `F.𝓥 → G.𝓥` induced by a homomorphism of Feynman diagrams. -/
|
||||
@[simp]
|
||||
def 𝓥 : F.𝓥 → G.𝓥 := f.𝓥𝓞.left
|
||||
|
||||
/-- The map `F.𝓱𝓔 → G.𝓱𝓔` induced by a homomorphism of Feynman diagrams. -/
|
||||
@[simp]
|
||||
def 𝓱𝓔 : F.𝓱𝓔 → G.𝓱𝓔 := f.𝓱𝓔To𝓔𝓥.left
|
||||
|
||||
/-- The morphism `F.𝓱𝓔𝓞 ⟶ G.𝓱𝓔𝓞` induced by a homomorphism of Feynman diagrams. -/
|
||||
@[simp]
|
||||
def 𝓱𝓔𝓞 : F.𝓱𝓔𝓞 ⟶ G.𝓱𝓔𝓞 := P.toHalfEdge.map f.𝓱𝓔To𝓔𝓥
|
||||
|
||||
/-- The identity morphism for a Feynman diagram. -/
|
||||
def id (F : FeynmanDiagram P) : Hom F F where
|
||||
𝓔𝓞 := 𝟙 F.𝓔𝓞
|
||||
𝓥𝓞 := 𝟙 F.𝓥𝓞
|
||||
𝓱𝓔To𝓔𝓥 := 𝟙 F.𝓱𝓔To𝓔𝓥
|
||||
|
||||
/-- The composition of two morphisms of Feynman diagrams. -/
|
||||
@[simps! 𝓔𝓞_left 𝓥𝓞_left 𝓱𝓔To𝓔𝓥_left]
|
||||
def comp {F G H : FeynmanDiagram P} (f : Hom F G) (g : Hom G H) : Hom F H where
|
||||
𝓔𝓞 := f.𝓔𝓞 ≫ g.𝓔𝓞
|
||||
𝓥𝓞 := f.𝓥𝓞 ≫ g.𝓥𝓞
|
||||
𝓱𝓔To𝓔𝓥 := (edgeVertexFunc g.𝓔 g.𝓥).map f.𝓱𝓔To𝓔𝓥 ≫ g.𝓱𝓔To𝓔𝓥
|
||||
|
||||
lemma ext' {F G : FeynmanDiagram P} {f g : Hom F G} (h𝓔 : f.𝓔𝓞 = g.𝓔𝓞)
|
||||
(h𝓥 : f.𝓥𝓞 = g.𝓥𝓞) (h𝓱𝓔 : f.𝓱𝓔 = g.𝓱𝓔) : f = g := by
|
||||
cases f
|
||||
cases g
|
||||
subst h𝓔 h𝓥
|
||||
simp_all only [mk.injEq, heq_eq_eq, true_and]
|
||||
ext a : 2
|
||||
simp only [𝓱𝓔] at h𝓱𝓔
|
||||
exact congrFun h𝓱𝓔 a
|
||||
|
||||
lemma ext {F G : FeynmanDiagram P} {f g : Hom F G} (h𝓔 : f.𝓔 = g.𝓔)
|
||||
(h𝓥 : f.𝓥 = g.𝓥) (h𝓱𝓔 : f.𝓱𝓔 = g.𝓱𝓔) : f = g :=
|
||||
ext' (Over.OverMorphism.ext h𝓔) (Over.OverMorphism.ext h𝓥) h𝓱𝓔
|
||||
|
||||
/-- The condition on maps of edges, vertices and half-edges for it to be lifted to a
|
||||
morphism of Feynman diagrams. -/
|
||||
def Cond {F G : FeynmanDiagram P} (𝓔 : F.𝓔 → G.𝓔) (𝓥 : F.𝓥 → G.𝓥) (𝓱𝓔 : F.𝓱𝓔 → G.𝓱𝓔) : Prop :=
|
||||
(∀ x, G.𝓔𝓞.hom (𝓔 x) = F.𝓔𝓞.hom x) ∧
|
||||
(∀ x, G.𝓥𝓞.hom (𝓥 x) = F.𝓥𝓞.hom x) ∧
|
||||
(∀ x, G.𝓱𝓔To𝓔𝓥.hom (𝓱𝓔 x) = edgeVertexMap 𝓔 𝓥 (F.𝓱𝓔To𝓔𝓥.hom x))
|
||||
|
||||
lemma cond_satisfied {F G : FeynmanDiagram P} (f : Hom F G) :
|
||||
Cond f.𝓔 f.𝓥 f.𝓱𝓔 :=
|
||||
⟨fun x => congrFun f.𝓔𝓞.w x, fun x => congrFun f.𝓥𝓞.w x, fun x => congrFun f.𝓱𝓔To𝓔𝓥.w x⟩
|
||||
|
||||
lemma cond_symm {F G : FeynmanDiagram P} (𝓔 : F.𝓔 ≃ G.𝓔) (𝓥 : F.𝓥 ≃ G.𝓥) (𝓱𝓔 : F.𝓱𝓔 ≃ G.𝓱𝓔)
|
||||
(h : Cond 𝓔 𝓥 𝓱𝓔) : Cond 𝓔.symm 𝓥.symm 𝓱𝓔.symm := by
|
||||
refine ⟨?_, ?_, fun x => ?_⟩
|
||||
· simpa using fun x => (h.1 (𝓔.symm x)).symm
|
||||
· simpa using fun x => (h.2.1 (𝓥.symm x)).symm
|
||||
· have h1 := h.2.2 (𝓱𝓔.symm x)
|
||||
simp only [Functor.const_obj_obj, Equiv.apply_symm_apply] at h1
|
||||
exact (edgeVertexEquiv 𝓔 𝓥).apply_eq_iff_eq_symm_apply.mp (h1).symm
|
||||
|
||||
/-- If `𝓔` is a map between the edges of one finite Feynman diagram and another Feynman diagram,
|
||||
then deciding whether `𝓔` froms a morphism in `Over P.EdgeLabel` between the edge
|
||||
maps is decidable. -/
|
||||
instance {F G : FeynmanDiagram P} [IsFiniteDiagram F] [IsFinitePreFeynmanRule P]
|
||||
(𝓔 : F.𝓔 → G.𝓔) : Decidable (∀ x, G.𝓔𝓞.hom (𝓔 x) = F.𝓔𝓞.hom x) :=
|
||||
@Fintype.decidableForallFintype _ _ (fun _ => preFeynmanRuleDecEq𝓔 P _ _) _
|
||||
|
||||
/-- If `𝓥` is a map between the vertices of one finite Feynman diagram and another Feynman diagram,
|
||||
then deciding whether `𝓥` froms a morphism in `Over P.VertexLabel` between the vertex
|
||||
maps is decidable. -/
|
||||
instance {F G : FeynmanDiagram P} [IsFiniteDiagram F] [IsFinitePreFeynmanRule P]
|
||||
(𝓥 : F.𝓥 → G.𝓥) : Decidable (∀ x, G.𝓥𝓞.hom (𝓥 x) = F.𝓥𝓞.hom x) :=
|
||||
@Fintype.decidableForallFintype _ _ (fun _ => preFeynmanRuleDecEq𝓥 P _ _) _
|
||||
|
||||
/-- Given maps between parts of two Feynman diagrams, it is decidable to determine
|
||||
whether on mapping half-edges, the corresponding half-edge labels, edges and vertices
|
||||
are consistent. -/
|
||||
instance {F G : FeynmanDiagram P} [IsFiniteDiagram F] [IsFiniteDiagram G] [IsFinitePreFeynmanRule P]
|
||||
(𝓔 : F.𝓔 → G.𝓔) (𝓥 : F.𝓥 → G.𝓥) (𝓱𝓔 : F.𝓱𝓔 → G.𝓱𝓔) :
|
||||
Decidable (∀ x, G.𝓱𝓔To𝓔𝓥.hom (𝓱𝓔 x) = edgeVertexMap 𝓔 𝓥 (F.𝓱𝓔To𝓔𝓥.hom x)) :=
|
||||
@Fintype.decidableForallFintype _ _ (fun _ => fintypeProdHalfEdgeLabel𝓔𝓥 _ _) _
|
||||
|
||||
/-- The condition on whether a map of maps of edges, vertices and half-edges can be
|
||||
lifted to a morphism of Feynman diagrams is decidable. -/
|
||||
instance {F G : FeynmanDiagram P} [IsFiniteDiagram F] [IsFiniteDiagram G] [IsFinitePreFeynmanRule P]
|
||||
(𝓔 : F.𝓔 → G.𝓔) (𝓥 : F.𝓥 → G.𝓥) (𝓱𝓔 : F.𝓱𝓔 → G.𝓱𝓔) : Decidable (Cond 𝓔 𝓥 𝓱𝓔) :=
|
||||
instDecidableAnd
|
||||
|
||||
/-- Making a Feynman diagram from maps of edges, vertices and half-edges. -/
|
||||
@[simps! 𝓔𝓞_left 𝓥𝓞_left 𝓱𝓔To𝓔𝓥_left]
|
||||
def mk' {F G : FeynmanDiagram P} (𝓔 : F.𝓔 → G.𝓔) (𝓥 : F.𝓥 → G.𝓥) (𝓱𝓔 : F.𝓱𝓔 → G.𝓱𝓔)
|
||||
(C : Cond 𝓔 𝓥 𝓱𝓔) : Hom F G where
|
||||
𝓔𝓞 := Over.homMk 𝓔 $ funext C.1
|
||||
𝓥𝓞 := Over.homMk 𝓥 $ funext C.2.1
|
||||
𝓱𝓔To𝓔𝓥 := Over.homMk 𝓱𝓔 $ funext C.2.2
|
||||
|
||||
lemma mk'_self {F G : FeynmanDiagram P} (f : Hom F G) :
|
||||
mk' f.𝓔 f.𝓥 f.𝓱𝓔 f.cond_satisfied = f := rfl
|
||||
|
||||
end Hom
|
||||
|
||||
/-!
|
||||
|
||||
## The Category of Feynman diagrams
|
||||
|
||||
Feynman diagrams, as defined above, form a category.
|
||||
We will be able to use this category to define the symmetry factor of a Feynman diagram,
|
||||
and the condition on whether a diagram is connected.
|
||||
-/
|
||||
|
||||
/-- Feynman diagrams form a category. -/
|
||||
@[simps! id_𝓔𝓞_left id_𝓥𝓞_left id_𝓱𝓔To𝓔𝓥_left comp_𝓔𝓞_left comp_𝓥𝓞_left comp_𝓱𝓔To𝓔𝓥_left]
|
||||
instance : Category (FeynmanDiagram P) where
|
||||
Hom := Hom
|
||||
id := Hom.id
|
||||
comp := Hom.comp
|
||||
|
||||
/-- An isomorphism of Feynman diagrams from isomorphisms of edges, vertices and half-edges. -/
|
||||
def mkIso {F G : FeynmanDiagram P} (𝓔 : F.𝓔 ≃ G.𝓔) (𝓥 : F.𝓥 ≃ G.𝓥) (𝓱𝓔 : F.𝓱𝓔 ≃ G.𝓱𝓔)
|
||||
(C : Hom.Cond 𝓔 𝓥 𝓱𝓔) : F ≅ G where
|
||||
hom := Hom.mk' 𝓔 𝓥 𝓱𝓔 C
|
||||
inv := Hom.mk' 𝓔.symm 𝓥.symm 𝓱𝓔.symm (Hom.cond_symm 𝓔 𝓥 𝓱𝓔 C)
|
||||
hom_inv_id := by
|
||||
apply Hom.ext
|
||||
all_goals
|
||||
aesop_cat
|
||||
inv_hom_id := by
|
||||
apply Hom.ext
|
||||
all_goals
|
||||
aesop_cat
|
||||
|
||||
/-- The functor from Feynman diagrams to category over edge labels. -/
|
||||
def func𝓔𝓞 : FeynmanDiagram P ⥤ Over P.EdgeLabel where
|
||||
obj F := F.𝓔𝓞
|
||||
map f := f.𝓔𝓞
|
||||
|
||||
/-- The functor from Feynman diagrams to category over vertex labels. -/
|
||||
def func𝓥𝓞 : FeynmanDiagram P ⥤ Over P.VertexLabel where
|
||||
obj F := F.𝓥𝓞
|
||||
map f := f.𝓥𝓞
|
||||
|
||||
/-- The functor from Feynman diagrams to category over half-edge labels. -/
|
||||
def func𝓱𝓔𝓞 : FeynmanDiagram P ⥤ Over P.HalfEdgeLabel where
|
||||
obj F := F.𝓱𝓔𝓞
|
||||
map f := f.𝓱𝓔𝓞
|
||||
|
||||
/-- The functor from Feynman diagrams to `Type` landing on edges. -/
|
||||
def func𝓔 : FeynmanDiagram P ⥤ Type where
|
||||
obj F := F.𝓔
|
||||
map f := f.𝓔
|
||||
|
||||
/-- The functor from Feynman diagrams to `Type` landing on vertices. -/
|
||||
def func𝓥 : FeynmanDiagram P ⥤ Type where
|
||||
obj F := F.𝓥
|
||||
map f := f.𝓥
|
||||
|
||||
/-- The functor from Feynman diagrams to `Type` landing on half-edges. -/
|
||||
def func𝓱𝓔 : FeynmanDiagram P ⥤ Type where
|
||||
obj F := F.𝓱𝓔
|
||||
map f := f.𝓱𝓔
|
||||
|
||||
section symmetryFactor
|
||||
/-!
|
||||
## Symmetry factors
|
||||
|
||||
The symmetry factor of a Feynman diagram is the cardinality of the group of automorphisms of that
|
||||
diagram.
|
||||
|
||||
We show that the symmetry factor for a finite Feynman diagram is finite.
|
||||
|
||||
-/
|
||||
|
||||
/-- The type of isomorphisms of a Feynman diagram. -/
|
||||
def SymmetryType : Type := F ≅ F
|
||||
|
||||
/-- An equivalence between `SymmetryType` and permutation of edges, vertices and half-edges
|
||||
satisfying `Hom.Cond`. -/
|
||||
def symmetryTypeEquiv :
|
||||
F.SymmetryType ≃ {S : Equiv.Perm F.𝓔 × Equiv.Perm F.𝓥 × Equiv.Perm F.𝓱𝓔 //
|
||||
Hom.Cond S.1 S.2.1 S.2.2} where
|
||||
toFun f := ⟨⟨(func𝓔.mapIso f).toEquiv, (func𝓥.mapIso f).toEquiv,
|
||||
(func𝓱𝓔.mapIso f).toEquiv⟩, f.1.cond_satisfied⟩
|
||||
invFun S := mkIso S.1.1 S.1.2.1 S.1.2.2 S.2
|
||||
left_inv _ := rfl
|
||||
right_inv _ := rfl
|
||||
|
||||
/-- For a finite Feynman diagram, the type of automorphisms of that Feynman diagram is finite. -/
|
||||
instance [IsFinitePreFeynmanRule P] [IsFiniteDiagram F] : Fintype F.SymmetryType :=
|
||||
Fintype.ofEquiv _ F.symmetryTypeEquiv.symm
|
||||
|
||||
/-- The symmetry factor can be defined as the cardinal of the symmetry type.
|
||||
In general this is not a finite number. -/
|
||||
@[simp]
|
||||
def cardSymmetryFactor : Cardinal := Cardinal.mk (F.SymmetryType)
|
||||
|
||||
/-- The symmetry factor of a Finite Feynman diagram, as a natural number. -/
|
||||
@[simp]
|
||||
def symmetryFactor [IsFinitePreFeynmanRule P] [IsFiniteDiagram F] : ℕ :=
|
||||
(Fintype.card F.SymmetryType)
|
||||
|
||||
@[simp]
|
||||
lemma symmetryFactor_eq_cardSymmetryFactor [IsFinitePreFeynmanRule P] [IsFiniteDiagram F] :
|
||||
F.symmetryFactor = F.cardSymmetryFactor := by
|
||||
simp only [symmetryFactor, cardSymmetryFactor, Cardinal.mk_fintype]
|
||||
|
||||
end symmetryFactor
|
||||
|
||||
section connectedness
|
||||
/-!
|
||||
|
||||
## Connectedness
|
||||
|
||||
Given a Feynman diagram we can create a simple graph based on the obvious adjacency relation.
|
||||
A feynman diagram is connected if its simple graph is connected.
|
||||
|
||||
## TODO
|
||||
|
||||
- Complete this section.
|
||||
|
||||
-/
|
||||
|
||||
/-- A relation on the vertices of Feynman diagrams. The proposition is true if the two
|
||||
vertices are not equal and are connected by a single edge.
|
||||
This is the adjacency relation. -/
|
||||
@[simp]
|
||||
def AdjRelation : F.𝓥 → F.𝓥 → Prop := fun x y =>
|
||||
x ≠ y ∧
|
||||
∃ (a b : F.𝓱𝓔), ((F.𝓱𝓔To𝓔𝓥.hom a).2.1 = (F.𝓱𝓔To𝓔𝓥.hom b).2.1
|
||||
∧ (F.𝓱𝓔To𝓔𝓥.hom a).2.2 = x ∧ (F.𝓱𝓔To𝓔𝓥.hom b).2.2 = y)
|
||||
|
||||
/-- The condition on whether two vertices are adjacent is deciable. -/
|
||||
instance [IsFiniteDiagram F] : DecidableRel F.AdjRelation := fun _ _ =>
|
||||
@instDecidableAnd _ _ _ $
|
||||
@Fintype.decidableExistsFintype _ _ (fun _ => @Fintype.decidableExistsFintype _ _
|
||||
(fun _ => @instDecidableAnd _ _ (instDecidableEq𝓔OfIsFiniteDiagram _ _) $
|
||||
@instDecidableAnd _ _ (instDecidableEq𝓥OfIsFiniteDiagram _ _)
|
||||
(instDecidableEq𝓥OfIsFiniteDiagram _ _)) _) _
|
||||
|
||||
/-- From a Feynman diagram the simple graph showing those vertices which are connected. -/
|
||||
def toSimpleGraph : SimpleGraph F.𝓥 where
|
||||
Adj := AdjRelation F
|
||||
symm := by
|
||||
intro x y h
|
||||
apply And.intro (Ne.symm h.1)
|
||||
obtain ⟨a, b, hab⟩ := h.2
|
||||
use b, a
|
||||
simp_all only [AdjRelation, ne_eq, and_self]
|
||||
loopless := by
|
||||
intro x h
|
||||
simp at h
|
||||
|
||||
/-- The adjacency relation for a simple graph created by a finite Feynman diagram
|
||||
is a decidable relation. -/
|
||||
instance [IsFiniteDiagram F] : DecidableRel F.toSimpleGraph.Adj :=
|
||||
instDecidableRel𝓥AdjRelationOfIsFiniteDiagram F
|
||||
|
||||
/-- For a finite feynman diagram it is deciable whether it is preconnected and has
|
||||
the Feynman diagram has a non-empty type of vertices. -/
|
||||
instance [IsFiniteDiagram F] :
|
||||
Decidable (F.toSimpleGraph.Preconnected ∧ Nonempty F.𝓥) :=
|
||||
@instDecidableAnd _ _ _ $ decidable_of_iff _ Finset.univ_nonempty_iff
|
||||
|
||||
/-- For a finite Feynman diagram it is decidable whether the simple graph corresponding to it
|
||||
is connected. -/
|
||||
instance [IsFiniteDiagram F] : Decidable F.toSimpleGraph.Connected :=
|
||||
decidable_of_iff _ (SimpleGraph.connected_iff F.toSimpleGraph).symm
|
||||
|
||||
/-- A Feynman diagram is connected if its simple graph is connected. -/
|
||||
def Connected : Prop := F.toSimpleGraph.Connected
|
||||
|
||||
/-- For a finite Feynman diagram it is decidable whether or not it is connected. -/
|
||||
instance [IsFiniteDiagram F] : Decidable (Connected F) :=
|
||||
instDecidableConnected𝓥ToSimpleGraphOfIsFiniteDiagram F
|
||||
|
||||
end connectedness
|
||||
|
||||
end FeynmanDiagram
|
|
@ -0,0 +1,69 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.FeynmanDiagrams.Basic
|
||||
/-!
|
||||
# Feynman diagrams in a complex scalar field theory
|
||||
|
||||
-/
|
||||
|
||||
namespace PhiFour
|
||||
open CategoryTheory
|
||||
open FeynmanDiagram
|
||||
open PreFeynmanRule
|
||||
|
||||
/-- The pre-Feynman rules for a complex scalar theory. -/
|
||||
@[simps!]
|
||||
def complexScalarFeynmanRules : PreFeynmanRule where
|
||||
/- There is 2 types of `half-edge`. -/
|
||||
HalfEdgeLabel := Fin 2
|
||||
/- There is only 1 type of `edge`. -/
|
||||
EdgeLabel := Fin 1
|
||||
/- There are two types of `vertex`, two external `0` and internal `1`. -/
|
||||
VertexLabel := Fin 3
|
||||
edgeLabelMap x :=
|
||||
match x with
|
||||
| 0 => Over.mk ![0, 1]
|
||||
vertexLabelMap x :=
|
||||
match x with
|
||||
| 0 => Over.mk ![0]
|
||||
| 1 => Over.mk ![1]
|
||||
| 2 => Over.mk ![0, 0, 1, 1]
|
||||
|
||||
/-- An instance allowing us to use integers for edge labels for complex scalar theory. -/
|
||||
instance (a : ℕ) : OfNat complexScalarFeynmanRules.EdgeLabel a where
|
||||
ofNat := (a : Fin _)
|
||||
|
||||
/-- An instance allowing us to use integers for half-edge labels for complex scalar theory. -/
|
||||
instance (a : ℕ) : OfNat complexScalarFeynmanRules.HalfEdgeLabel a where
|
||||
ofNat := (a : Fin _)
|
||||
|
||||
/-- An instance allowing us to use integers for vertex labels for complex scalar theory. -/
|
||||
instance (a : ℕ) : OfNat complexScalarFeynmanRules.VertexLabel a where
|
||||
ofNat := (a : Fin _)
|
||||
|
||||
/-- The pre feynman rules for complex scalars are finite. -/
|
||||
instance : IsFinitePreFeynmanRule complexScalarFeynmanRules where
|
||||
edgeLabelDecidable := instDecidableEqFin _
|
||||
vertexLabelDecidable := instDecidableEqFin _
|
||||
halfEdgeLabelDecidable := instDecidableEqFin _
|
||||
vertexMapFintype := fun v =>
|
||||
match v with
|
||||
| 0 => Fin.fintype _
|
||||
| 1 => Fin.fintype _
|
||||
| 2 => Fin.fintype _
|
||||
edgeMapFintype := fun v =>
|
||||
match v with
|
||||
| 0 => Fin.fintype _
|
||||
vertexMapDecidable := fun v =>
|
||||
match v with
|
||||
| 0 => instDecidableEqFin _
|
||||
| 1 => instDecidableEqFin _
|
||||
| 2 => instDecidableEqFin _
|
||||
edgeMapDecidable := fun v =>
|
||||
match v with
|
||||
| 0 => instDecidableEqFin _
|
||||
|
||||
end PhiFour
|
|
@ -0,0 +1,96 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.FeynmanDiagrams.Basic
|
||||
/-!
|
||||
# Feynman diagrams in Phi^4 theory
|
||||
|
||||
The aim of this file is to start building up the theory of Feynman diagrams in the context of
|
||||
Phi^4 theory.
|
||||
|
||||
-/
|
||||
|
||||
namespace PhiFour
|
||||
open CategoryTheory
|
||||
open FeynmanDiagram
|
||||
open PreFeynmanRule
|
||||
|
||||
/-- The pre-Feynman rules for `Phi^4` theory. -/
|
||||
@[simps!]
|
||||
def phi4PreFeynmanRules : PreFeynmanRule where
|
||||
/- There is only 1 type of `half-edge`. -/
|
||||
HalfEdgeLabel := Fin 1
|
||||
/- There is only 1 type of `edge`. -/
|
||||
EdgeLabel := Fin 1
|
||||
/- There are two types of `vertex`, external `0` and internal `1`. -/
|
||||
VertexLabel := Fin 2
|
||||
edgeLabelMap x :=
|
||||
match x with
|
||||
| 0 => Over.mk ![0, 0]
|
||||
vertexLabelMap x :=
|
||||
match x with
|
||||
| 0 => Over.mk ![0]
|
||||
| 1 => Over.mk ![0, 0, 0, 0]
|
||||
|
||||
/-- An instance allowing us to use integers for edge labels for Phi-4. -/
|
||||
instance (a : ℕ) : OfNat phi4PreFeynmanRules.EdgeLabel a where
|
||||
ofNat := (a : Fin _)
|
||||
|
||||
/-- An instance allowing us to use integers for half edge labels for Phi-4. -/
|
||||
instance (a : ℕ) : OfNat phi4PreFeynmanRules.HalfEdgeLabel a where
|
||||
ofNat := (a : Fin _)
|
||||
|
||||
/-- An instance allowing us to use integers for vertex labels for Phi-4. -/
|
||||
instance (a : ℕ) : OfNat phi4PreFeynmanRules.VertexLabel a where
|
||||
ofNat := (a : Fin _)
|
||||
|
||||
/-- The pre feynman rules for Phi-4 are finite. -/
|
||||
instance : IsFinitePreFeynmanRule phi4PreFeynmanRules where
|
||||
edgeLabelDecidable := instDecidableEqFin _
|
||||
vertexLabelDecidable := instDecidableEqFin _
|
||||
halfEdgeLabelDecidable := instDecidableEqFin _
|
||||
vertexMapFintype := fun v =>
|
||||
match v with
|
||||
| 0 => Fin.fintype _
|
||||
| 1 => Fin.fintype _
|
||||
edgeMapFintype := fun v =>
|
||||
match v with
|
||||
| 0 => Fin.fintype _
|
||||
vertexMapDecidable := fun v =>
|
||||
match v with
|
||||
| 0 => instDecidableEqFin _
|
||||
| 1 => instDecidableEqFin _
|
||||
edgeMapDecidable := fun v =>
|
||||
match v with
|
||||
| 0 => instDecidableEqFin _
|
||||
|
||||
/-!
|
||||
|
||||
## The figure eight diagram
|
||||
|
||||
This section provides an example of the use of Feynman diagrams in HepLean.
|
||||
|
||||
-/
|
||||
section Example
|
||||
|
||||
/-- The figure eight Feynman diagram. -/
|
||||
abbrev figureEight : FeynmanDiagram phi4PreFeynmanRules :=
|
||||
mk'
|
||||
![0, 0] -- edges
|
||||
![1] -- one internal vertex
|
||||
![⟨0, 0, 0⟩, ⟨0, 0, 0⟩, ⟨0, 1, 0⟩, ⟨0, 1, 0⟩] -- four half-edges
|
||||
(by decide) -- the condition to form a Feynman diagram.
|
||||
|
||||
/-- `figureEight` is connected. We can get this from
|
||||
`#eval Connected figureEight`. -/
|
||||
lemma figureEight_connected : Connected figureEight := by decide
|
||||
|
||||
/-- The symmetry factor of `figureEight` is 8. We can get this from
|
||||
`#eval symmetryFactor figureEight`. -/
|
||||
lemma figureEight_symmetryFactor : symmetryFactor figureEight = 8 := by rfl
|
||||
|
||||
end Example
|
||||
|
||||
end PhiFour
|
223
HepLean/PerturbationTheory/FeynmanDiagrams/Momentum.lean
Normal file
223
HepLean/PerturbationTheory/FeynmanDiagrams/Momentum.lean
Normal file
|
@ -0,0 +1,223 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.FeynmanDiagrams.Basic
|
||||
import Mathlib.Data.Real.Basic
|
||||
import Mathlib.Algebra.DirectSum.Module
|
||||
import Mathlib.LinearAlgebra.SesquilinearForm
|
||||
import Mathlib.LinearAlgebra.Dimension.Finrank
|
||||
/-!
|
||||
# Momentum in Feynman diagrams
|
||||
|
||||
The aim of this file is to associate with each half-edge of a Feynman diagram a momentum,
|
||||
and constrain the momentums based conservation at each vertex and edge.
|
||||
|
||||
The number of loops of a Feynman diagram is related to the dimension of the resulting
|
||||
vector space.
|
||||
|
||||
## TODO
|
||||
|
||||
- Prove lemmas that make the calculation of the number of loops of a Feynman diagram easier.
|
||||
|
||||
## Note
|
||||
|
||||
This section is non-computable as we depend on the norm on `F.HalfEdgeMomenta`.
|
||||
-/
|
||||
|
||||
namespace FeynmanDiagram
|
||||
|
||||
open CategoryTheory
|
||||
open PreFeynmanRule
|
||||
|
||||
variable {P : PreFeynmanRule} (F : FeynmanDiagram P) [IsFiniteDiagram F]
|
||||
|
||||
/-!
|
||||
|
||||
## Vector spaces associated with momenta in Feynman diagrams.
|
||||
|
||||
We define the vector space associated with momenta carried by half-edges,
|
||||
outflowing momenta of edges, and inflowing momenta of vertices.
|
||||
|
||||
We define the direct sum of the edge and vertex momentum spaces.
|
||||
|
||||
-/
|
||||
|
||||
/-- The type which assocaites to each half-edge a `1`-dimensional vector space.
|
||||
Corresponding to that spanned by its momentum. -/
|
||||
def HalfEdgeMomenta : Type := F.𝓱𝓔 → ℝ
|
||||
|
||||
/-- The half momenta carries the structure of an addative commutative group. -/
|
||||
instance : AddCommGroup F.HalfEdgeMomenta := Pi.addCommGroup
|
||||
|
||||
/-- The half momenta carries the structure of a module over `ℝ`. Defined via its target. -/
|
||||
instance : Module ℝ F.HalfEdgeMomenta := Pi.module _ _ _
|
||||
|
||||
/-- An auxiliary function used to define the Euclidean inner product on `F.HalfEdgeMomenta`. -/
|
||||
def euclidInnerAux (x : F.HalfEdgeMomenta) : F.HalfEdgeMomenta →ₗ[ℝ] ℝ where
|
||||
toFun y := ∑ i, (x i) * (y i)
|
||||
map_add' z y :=
|
||||
show (∑ i, (x i) * (z i + y i)) = (∑ i, x i * z i) + ∑ i, x i * (y i) by
|
||||
simp only [mul_add, Finset.sum_add_distrib]
|
||||
map_smul' c y :=
|
||||
show (∑ i, x i * (c * y i)) = c * ∑ i, x i * y i by
|
||||
rw [Finset.mul_sum]
|
||||
refine Finset.sum_congr rfl (fun _ _ => by ring)
|
||||
|
||||
lemma euclidInnerAux_symm (x y : F.HalfEdgeMomenta) :
|
||||
F.euclidInnerAux x y = F.euclidInnerAux y x := Finset.sum_congr rfl (fun _ _ => by ring)
|
||||
|
||||
/-- The Euclidean inner product on `F.HalfEdgeMomenta`. -/
|
||||
def euclidInner : F.HalfEdgeMomenta →ₗ[ℝ] F.HalfEdgeMomenta →ₗ[ℝ] ℝ where
|
||||
toFun x := F.euclidInnerAux x
|
||||
map_add' x y := by
|
||||
refine LinearMap.ext (fun z => ?_)
|
||||
simp only [euclidInnerAux_symm, map_add, LinearMap.add_apply]
|
||||
map_smul' c x := by
|
||||
refine LinearMap.ext (fun z => ?_)
|
||||
simp only [euclidInnerAux_symm, LinearMapClass.map_smul, smul_eq_mul, RingHom.id_apply,
|
||||
LinearMap.smul_apply]
|
||||
|
||||
/-- The type which associates to each edge a `1`-dimensional vector space.
|
||||
Corresponding to that spanned by its total outflowing momentum. -/
|
||||
def EdgeMomenta : Type := F.𝓔 → ℝ
|
||||
|
||||
/-- The edge momenta form an addative commuative group. -/
|
||||
instance : AddCommGroup F.EdgeMomenta := Pi.addCommGroup
|
||||
|
||||
/-- The edge momenta form a module over `ℝ`. -/
|
||||
instance : Module ℝ F.EdgeMomenta := Pi.module _ _ _
|
||||
|
||||
/-- The type which assocaites to each ege a `1`-dimensional vector space.
|
||||
Corresponding to that spanned by its total inflowing momentum. -/
|
||||
def VertexMomenta : Type := F.𝓥 → ℝ
|
||||
|
||||
/-- The vertex momenta carries the structure of an addative commuative group. -/
|
||||
instance : AddCommGroup F.VertexMomenta := Pi.addCommGroup
|
||||
|
||||
/-- The vertex momenta carries the structure of a module over `ℝ`. -/
|
||||
instance : Module ℝ F.VertexMomenta := Pi.module _ _ _
|
||||
|
||||
/-- The map from `Fin 2` to `Type` landing on `EdgeMomenta` and `VertexMomenta`. -/
|
||||
def EdgeVertexMomentaMap : Fin 2 → Type := fun i =>
|
||||
match i with
|
||||
| 0 => F.EdgeMomenta
|
||||
| 1 => F.VertexMomenta
|
||||
|
||||
/-- The target of the map `EdgeVertexMomentaMap` is either the type of edge momenta
|
||||
or vertex momenta and thus carries the structure of an addative commuative group. -/
|
||||
instance (i : Fin 2) : AddCommGroup (EdgeVertexMomentaMap F i) :=
|
||||
match i with
|
||||
| 0 => instAddCommGroupEdgeMomenta F
|
||||
| 1 => instAddCommGroupVertexMomenta F
|
||||
|
||||
/-- The target of the map `EdgeVertexMomentaMap` is either the type of edge momenta
|
||||
or vertex momenta and thus carries the structure of a module over `ℝ`. -/
|
||||
instance (i : Fin 2) : Module ℝ (EdgeVertexMomentaMap F i) :=
|
||||
match i with
|
||||
| 0 => instModuleRealEdgeMomenta F
|
||||
| 1 => instModuleRealVertexMomenta F
|
||||
|
||||
/-- The direct sum of `EdgeMomenta` and `VertexMomenta`. -/
|
||||
def EdgeVertexMomenta : Type := DirectSum (Fin 2) (EdgeVertexMomentaMap F)
|
||||
|
||||
/-- The structure of a addative commutative group on `EdgeVertexMomenta` for a
|
||||
Feynman diagram `F`. -/
|
||||
instance : AddCommGroup F.EdgeVertexMomenta := DirectSum.instAddCommGroup _
|
||||
|
||||
/-- The structure of a module over `ℝ` on `EdgeVertexMomenta` for a Feynman diagram `F`. -/
|
||||
instance : Module ℝ F.EdgeVertexMomenta := DirectSum.instModule
|
||||
|
||||
/-!
|
||||
|
||||
## Linear maps between the vector spaces.
|
||||
|
||||
We define various maps into `F.HalfEdgeMomenta`.
|
||||
|
||||
In particular, we define a map from `F.EdgeVertexMomenta` to `F.HalfEdgeMomenta`. This
|
||||
map represents the space orthogonal (with respect to the standard Euclidean inner product)
|
||||
to the allowed momenta of half-edges (up-to an offset determined by the
|
||||
external momenta).
|
||||
|
||||
The number of loops of a diagram is defined as the number of half-edges minus
|
||||
the rank of this matrix.
|
||||
|
||||
-/
|
||||
|
||||
/-- The linear map from `F.EdgeMomenta` to `F.HalfEdgeMomenta` induced by
|
||||
the map `F.𝓱𝓔To𝓔.hom`. -/
|
||||
def edgeToHalfEdgeMomenta : F.EdgeMomenta →ₗ[ℝ] F.HalfEdgeMomenta where
|
||||
toFun x := x ∘ F.𝓱𝓔To𝓔.hom
|
||||
map_add' _ _ := by rfl
|
||||
map_smul' _ _ := by rfl
|
||||
|
||||
/-- The linear map from `F.VertexMomenta` to `F.HalfEdgeMomenta` induced by
|
||||
the map `F.𝓱𝓔To𝓥.hom`. -/
|
||||
def vertexToHalfEdgeMomenta : F.VertexMomenta →ₗ[ℝ] F.HalfEdgeMomenta where
|
||||
toFun x := x ∘ F.𝓱𝓔To𝓥.hom
|
||||
map_add' _ _ := rfl
|
||||
map_smul' _ _ := rfl
|
||||
|
||||
/-- The linear map from `F.EdgeVertexMomenta` to `F.HalfEdgeMomenta` induced by
|
||||
`F.edgeToHalfEdgeMomenta` and `F.vertexToHalfEdgeMomenta`. -/
|
||||
def edgeVertexToHalfEdgeMomenta : F.EdgeVertexMomenta →ₗ[ℝ] F.HalfEdgeMomenta :=
|
||||
DirectSum.toModule ℝ (Fin 2) F.HalfEdgeMomenta
|
||||
(fun i => match i with | 0 => F.edgeToHalfEdgeMomenta | 1 => F.vertexToHalfEdgeMomenta)
|
||||
|
||||
/-!
|
||||
|
||||
## Submodules
|
||||
|
||||
We define submodules of `F.HalfEdgeMomenta` which correspond to
|
||||
the orthogonal space to allowed momenta (up-to an offset), and the space of
|
||||
allowed momenta.
|
||||
|
||||
-/
|
||||
|
||||
/-- The submodule of `F.HalfEdgeMomenta` corresponding to the range of
|
||||
`F.edgeVertexToHalfEdgeMomenta`. -/
|
||||
def orthogHalfEdgeMomenta : Submodule ℝ F.HalfEdgeMomenta :=
|
||||
LinearMap.range F.edgeVertexToHalfEdgeMomenta
|
||||
|
||||
/-- The submodule of `F.HalfEdgeMomenta` corresponding to the allowed momenta. -/
|
||||
def allowedHalfEdgeMomenta : Submodule ℝ F.HalfEdgeMomenta :=
|
||||
Submodule.orthogonalBilin F.orthogHalfEdgeMomenta F.euclidInner
|
||||
|
||||
/-!
|
||||
|
||||
## Number of loops
|
||||
|
||||
We define the number of loops of a Feynman diagram as the dimension of the
|
||||
allowed space of half-edge momenta.
|
||||
|
||||
-/
|
||||
|
||||
/-- The number of loops of a Feynman diagram. Defined as the dimension
|
||||
of the space of allowed Half-loop momenta. -/
|
||||
noncomputable def numberOfLoops : ℕ := Module.finrank ℝ F.allowedHalfEdgeMomenta
|
||||
|
||||
/-!
|
||||
|
||||
## Lemmas regarding `numberOfLoops`
|
||||
|
||||
We now give a series of lemmas which be used to help calculate the number of loops
|
||||
for specific Feynman diagrams.
|
||||
|
||||
### TODO
|
||||
|
||||
- Complete this section.
|
||||
|
||||
-/
|
||||
|
||||
/-!
|
||||
|
||||
## Category theory
|
||||
|
||||
### TODO
|
||||
|
||||
- Complete this section.
|
||||
|
||||
-/
|
||||
|
||||
end FeynmanDiagram
|
122
HepLean/PerturbationTheory/Wick/Algebra.lean
Normal file
122
HepLean/PerturbationTheory/Wick/Algebra.lean
Normal file
|
@ -0,0 +1,122 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.Wick.Species
|
||||
/-!
|
||||
|
||||
# Operator algebra
|
||||
|
||||
Currently this file is only for an example of Wick strings, correpsonding to a
|
||||
theory with two complex scalar fields. The concepts will however generalize.
|
||||
|
||||
This file is currently a stub.
|
||||
|
||||
We will formally define the operator ring, in terms of the fields present in the theory.
|
||||
|
||||
## Futher reading
|
||||
|
||||
- https://physics.stackexchange.com/questions/258718/ and links therein
|
||||
- Ryan Thorngren (https://physics.stackexchange.com/users/10336/ryan-thorngren), Fermions,
|
||||
different species and (anti-)commutation rules, URL (version: 2019-02-20) :
|
||||
https://physics.stackexchange.com/q/461929
|
||||
-/
|
||||
|
||||
namespace Wick
|
||||
open CategoryTheory
|
||||
open FeynmanDiagram
|
||||
open PreFeynmanRule
|
||||
|
||||
informal_definition WickAlgebra where
|
||||
math :≈ "
|
||||
Modifications of this may be needed.
|
||||
A structure with the following data:
|
||||
- A ℤ₂-graded algebra A.
|
||||
- A map from `ψ : 𝓔 × SpaceTime → A` where 𝓔 are field colors.
|
||||
- A map `ψc : 𝓔 × SpaceTime → A`.
|
||||
- A map `ψd : 𝓔 × SpaceTime → A`.
|
||||
Subject to the conditions:
|
||||
- The sum of `ψc` and `ψd` is `ψ`.
|
||||
- Two fields super-commute if there colors are not dual to each other.
|
||||
- The super-commutator of two fields is always in the
|
||||
center of the algebra. "
|
||||
physics :≈ "This is defined to be an
|
||||
abstraction of the notion of an operator algebra."
|
||||
ref :≈ "https://physics.stackexchange.com/questions/24157/"
|
||||
|
||||
informal_definition WickMonomial where
|
||||
math :≈ "The type of elements of the Wick algebra which is a product of fields."
|
||||
deps :≈ [``WickAlgebra]
|
||||
|
||||
namespace WickMonomial
|
||||
|
||||
informal_definition toWickAlgebra where
|
||||
math :≈ "A function from WickMonomial to WickAlgebra which takes a monomial and
|
||||
returns the product of the fields in the monomial."
|
||||
deps :≈ [``WickAlgebra, ``WickMonomial]
|
||||
|
||||
informal_definition timeOrder where
|
||||
math :≈ "A function from WickMonomial to WickAlgebra which takes a monomial and
|
||||
returns the monomial with the fields time ordered, with the correct sign
|
||||
determined by the Koszul sign factor.
|
||||
|
||||
If two fields have the same time, then their order is preserved e.g.
|
||||
T(ψ₁(t)ψ₂(t)) = ψ₁(t)ψ₂(t)
|
||||
and
|
||||
T(ψ₂(t)ψ₁(t)) = ψ₂(t)ψ₁(t).
|
||||
This allows us to make sense of the construction in e.g.
|
||||
https://www.physics.purdue.edu/~clarkt/Courses/Physics662/ps/qftch32.pdf
|
||||
which permits normal-ordering within time-ordering.
|
||||
"
|
||||
deps :≈ [``WickAlgebra, ``WickMonomial]
|
||||
|
||||
informal_definition normalOrder where
|
||||
math :≈ "A function from WickMonomial to WickAlgebra which takes a monomial and
|
||||
returns the element in `WickAlgebra` defined as follows
|
||||
- The ψd fields are move to the right.
|
||||
- The ψc fields are moved to the left.
|
||||
- Othewise the order of the fields is preserved."
|
||||
ref :≈ "https://www.imperial.ac.uk/media/imperial-college/research-centres-and-groups/theoretical-physics/msc/current/qft/handouts/qftwickstheorem.pdf"
|
||||
deps :≈ [``WickAlgebra, ``WickMonomial]
|
||||
|
||||
end WickMonomial
|
||||
|
||||
informal_definition contraction where
|
||||
math :≈ "Given two `i j : 𝓔 × SpaceTime`, the element of WickAlgebra
|
||||
defined by subtracting the normal ordering of `ψ i ψ j` from the time-ordering of
|
||||
`ψ i ψ j`."
|
||||
deps :≈ [``WickAlgebra, ``WickMonomial]
|
||||
|
||||
informal_lemma contraction_in_center where
|
||||
math :≈ "The contraction of two fields is in the center of the algebra."
|
||||
deps :≈ [``WickAlgebra, ``contraction]
|
||||
|
||||
informal_lemma contraction_non_dual_is_zero where
|
||||
math :≈ "The contraction of two fields is zero if the fields are not dual to each other."
|
||||
deps :≈ [``WickAlgebra, ``contraction]
|
||||
|
||||
informal_lemma timeOrder_single where
|
||||
math :≈ "The time ordering of a single field is the normal ordering of that field."
|
||||
proof :≈ "Follows from the definitions."
|
||||
deps :≈ [``WickAlgebra, ``WickMonomial.timeOrder, ``WickMonomial.normalOrder]
|
||||
|
||||
informal_lemma timeOrder_pair where
|
||||
math :≈ "The time ordering of two fields is the normal ordering of the fields plus the
|
||||
contraction of the fields."
|
||||
proof :≈ "Follows from the definition of contraction."
|
||||
deps :≈ [``WickAlgebra, ``WickMonomial.timeOrder, ``WickMonomial.normalOrder,
|
||||
``contraction]
|
||||
|
||||
informal_definition WickMap where
|
||||
math :≈ "A linear map `vev` from the Wick algebra `A` to the underlying field such that
|
||||
`vev(...ψd(t)) = 0` and `vev(ψc(t)...) = 0`."
|
||||
physics :≈ "An abstraction of the notion of a vacuum expectation value, containing
|
||||
the necessary properties for lots of theorems to hold."
|
||||
deps :≈ [``WickAlgebra, ``WickMonomial]
|
||||
|
||||
informal_lemma normalOrder_wickMap where
|
||||
math :≈ "Any normal ordering maps to zero under a Wick map."
|
||||
deps :≈ [``WickMap, ``WickMonomial.normalOrder]
|
||||
|
||||
end Wick
|
662
HepLean/PerturbationTheory/Wick/Contract.lean
Normal file
662
HepLean/PerturbationTheory/Wick/Contract.lean
Normal file
|
@ -0,0 +1,662 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.Wick.String
|
||||
/-!
|
||||
|
||||
# Wick Contract
|
||||
|
||||
Currently this file is only for an example of Wick contracts, correpsonding to a
|
||||
theory with two complex scalar fields. The concepts will however generalize.
|
||||
|
||||
## Further reading
|
||||
|
||||
- https://www.imperial.ac.uk/media/imperial-college/research-centres-and-groups/theoretical-physics/msc/current/qft/handouts/qftwickstheorem.pdf
|
||||
|
||||
-/
|
||||
|
||||
namespace TwoComplexScalar
|
||||
open CategoryTheory
|
||||
open FeynmanDiagram
|
||||
open PreFeynmanRule
|
||||
|
||||
/-- A Wick contraction for a Wick string is a series of pairs `i` and `j` of indices
|
||||
to be contracted, subject to ordering and subject to the condition that they can
|
||||
be contracted. -/
|
||||
inductive WickContract : {ni : ℕ} → {i : Fin ni → 𝓔} → {n : ℕ} → {c : Fin n → 𝓔} →
|
||||
{no : ℕ} → {o : Fin no → 𝓔} →
|
||||
(str : WickString i c o final) →
|
||||
{k : ℕ} → (b1 : Fin k → Fin n) → (b2 : Fin k → Fin n) → Type where
|
||||
| string {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final} : WickContract str Fin.elim0 Fin.elim0
|
||||
| contr {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final} {k : ℕ}
|
||||
{b1 : Fin k → Fin n} {b2 : Fin k → Fin n} : (i : Fin n) →
|
||||
(j : Fin n) → (h : c j = ξ (c i)) →
|
||||
(hilej : i < j) → (hb1 : ∀ r, b1 r < i) → (hb2i : ∀ r, b2 r ≠ i) → (hb2j : ∀ r, b2 r ≠ j) →
|
||||
(w : WickContract str b1 b2) →
|
||||
WickContract str (Fin.snoc b1 i) (Fin.snoc b2 j)
|
||||
|
||||
namespace WickContract
|
||||
|
||||
/-- The number of nodes of a Wick contraction. -/
|
||||
def size {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final} {k : ℕ} {b1 b2 : Fin k → Fin n} :
|
||||
WickContract str b1 b2 → ℕ := fun
|
||||
| string => 0
|
||||
| contr _ _ _ _ _ _ _ w => w.size + 1
|
||||
|
||||
/-- The number of nodes in a wick contraction tree is the same as `k`. -/
|
||||
lemma size_eq_k {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final} {k : ℕ} {b1 b2 : Fin k → Fin n} :
|
||||
(w : WickContract str b1 b2) → w.size = k := fun
|
||||
| string => rfl
|
||||
| contr _ _ _ _ _ _ _ w => by
|
||||
simpa [size] using w.size_eq_k
|
||||
|
||||
/-- The map giving the vertices on the left-hand-side of a contraction. -/
|
||||
@[nolint unusedArguments]
|
||||
def boundFst {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n} :
|
||||
WickContract str b1 b2 → Fin k → Fin n := fun _ => b1
|
||||
|
||||
@[simp]
|
||||
lemma boundFst_contr_castSucc {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n} (i j : Fin n)
|
||||
(h : c j = ξ (c i))
|
||||
(hilej : i < j)
|
||||
(hb1 : ∀ r, b1 r < i)
|
||||
(hb2i : ∀ r, b2 r ≠ i)
|
||||
(hb2j : ∀ r, b2 r ≠ j)
|
||||
(w : WickContract str b1 b2) (r : Fin k) :
|
||||
(contr i j h hilej hb1 hb2i hb2j w).boundFst r.castSucc = w.boundFst r := by
|
||||
simp only [boundFst, Fin.snoc_castSucc]
|
||||
|
||||
@[simp]
|
||||
lemma boundFst_contr_last {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n} (i j : Fin n)
|
||||
(h : c j = ξ (c i))
|
||||
(hilej : i < j)
|
||||
(hb1 : ∀ r, b1 r < i)
|
||||
(hb2i : ∀ r, b2 r ≠ i)
|
||||
(hb2j : ∀ r, b2 r ≠ j)
|
||||
(w : WickContract str b1 b2) :
|
||||
(contr i j h hilej hb1 hb2i hb2j w).boundFst (Fin.last k) = i := by
|
||||
simp only [boundFst, Fin.snoc_last]
|
||||
|
||||
lemma boundFst_strictMono {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n} : (w : WickContract str b1 b2) → StrictMono w.boundFst := fun
|
||||
| string => fun k => Fin.elim0 k
|
||||
| contr i j _ _ hb1 _ _ w => by
|
||||
intro r s hrs
|
||||
rcases Fin.eq_castSucc_or_eq_last r with hr | hr
|
||||
· obtain ⟨r, hr⟩ := hr
|
||||
subst hr
|
||||
rcases Fin.eq_castSucc_or_eq_last s with hs | hs
|
||||
· obtain ⟨s, hs⟩ := hs
|
||||
subst hs
|
||||
simp only [boundFst_contr_castSucc]
|
||||
apply w.boundFst_strictMono _
|
||||
simpa using hrs
|
||||
· subst hs
|
||||
simp only [boundFst_contr_castSucc, boundFst_contr_last]
|
||||
exact hb1 r
|
||||
· subst hr
|
||||
rcases Fin.eq_castSucc_or_eq_last s with hs | hs
|
||||
· obtain ⟨s, hs⟩ := hs
|
||||
subst hs
|
||||
rw [Fin.lt_def] at hrs
|
||||
simp only [Fin.val_last, Fin.coe_castSucc] at hrs
|
||||
omega
|
||||
· subst hs
|
||||
simp at hrs
|
||||
|
||||
/-- The map giving the vertices on the right-hand-side of a contraction. -/
|
||||
@[nolint unusedArguments]
|
||||
def boundSnd {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n} :
|
||||
WickContract str b1 b2 → Fin k → Fin n := fun _ => b2
|
||||
|
||||
@[simp]
|
||||
lemma boundSnd_contr_castSucc {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n} (i j : Fin n)
|
||||
(h : c j = ξ (c i))
|
||||
(hilej : i < j)
|
||||
(hb1 : ∀ r, b1 r < i)
|
||||
(hb2i : ∀ r, b2 r ≠ i)
|
||||
(hb2j : ∀ r, b2 r ≠ j)
|
||||
(w : WickContract str b1 b2) (r : Fin k) :
|
||||
(contr i j h hilej hb1 hb2i hb2j w).boundSnd r.castSucc = w.boundSnd r := by
|
||||
simp only [boundSnd, Fin.snoc_castSucc]
|
||||
|
||||
@[simp]
|
||||
lemma boundSnd_contr_last {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n} (i j : Fin n)
|
||||
(h : c j = ξ (c i))
|
||||
(hilej : i < j)
|
||||
(hb1 : ∀ r, b1 r < i)
|
||||
(hb2i : ∀ r, b2 r ≠ i)
|
||||
(hb2j : ∀ r, b2 r ≠ j)
|
||||
(w : WickContract str b1 b2) :
|
||||
(contr i j h hilej hb1 hb2i hb2j w).boundSnd (Fin.last k) = j := by
|
||||
simp only [boundSnd, Fin.snoc_last]
|
||||
|
||||
lemma boundSnd_injective {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n} :
|
||||
(w : WickContract str b1 b2) → Function.Injective w.boundSnd := fun
|
||||
| string => by
|
||||
intro i j _
|
||||
exact Fin.elim0 i
|
||||
| contr i j hij hilej hi h2i h2j w => by
|
||||
intro r s hrs
|
||||
rcases Fin.eq_castSucc_or_eq_last r with hr | hr
|
||||
· obtain ⟨r, hr⟩ := hr
|
||||
subst hr
|
||||
rcases Fin.eq_castSucc_or_eq_last s with hs | hs
|
||||
· obtain ⟨s, hs⟩ := hs
|
||||
subst hs
|
||||
simp only [boundSnd_contr_castSucc] at hrs
|
||||
simpa using w.boundSnd_injective hrs
|
||||
· subst hs
|
||||
simp only [boundSnd_contr_castSucc, boundSnd_contr_last] at hrs
|
||||
exact False.elim (h2j r hrs)
|
||||
· subst hr
|
||||
rcases Fin.eq_castSucc_or_eq_last s with hs | hs
|
||||
· obtain ⟨s, hs⟩ := hs
|
||||
subst hs
|
||||
simp only [boundSnd_contr_last, boundSnd_contr_castSucc] at hrs
|
||||
exact False.elim (h2j s hrs.symm)
|
||||
· subst hs
|
||||
rfl
|
||||
|
||||
lemma color_boundSnd_eq_dual_boundFst {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n} :
|
||||
(w : WickContract str b1 b2) → (i : Fin k) → c (w.boundSnd i) = ξ (c (w.boundFst i)) := fun
|
||||
| string => fun i => Fin.elim0 i
|
||||
| contr i j hij hilej hi _ _ w => fun r => by
|
||||
rcases Fin.eq_castSucc_or_eq_last r with hr | hr
|
||||
· obtain ⟨r, hr⟩ := hr
|
||||
subst hr
|
||||
simpa using w.color_boundSnd_eq_dual_boundFst r
|
||||
· subst hr
|
||||
simpa using hij
|
||||
|
||||
lemma boundFst_lt_boundSnd {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n} : (w : WickContract str b1 b2) → (i : Fin k) →
|
||||
w.boundFst i < w.boundSnd i := fun
|
||||
| string => fun i => Fin.elim0 i
|
||||
| contr i j hij hilej hi _ _ w => fun r => by
|
||||
rcases Fin.eq_castSucc_or_eq_last r with hr | hr
|
||||
· obtain ⟨r, hr⟩ := hr
|
||||
subst hr
|
||||
simpa using w.boundFst_lt_boundSnd r
|
||||
· subst hr
|
||||
simp only [boundFst_contr_last, boundSnd_contr_last]
|
||||
exact hilej
|
||||
|
||||
lemma boundFst_neq_boundSnd {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n} :
|
||||
(w : WickContract str b1 b2) → (r1 r2 : Fin k) → b1 r1 ≠ b2 r2 := fun
|
||||
| string => fun i => Fin.elim0 i
|
||||
| contr i j _ hilej h1 h2i h2j w => fun r s => by
|
||||
rcases Fin.eq_castSucc_or_eq_last r with hr | hr
|
||||
<;> rcases Fin.eq_castSucc_or_eq_last s with hs | hs
|
||||
· obtain ⟨r, hr⟩ := hr
|
||||
obtain ⟨s, hs⟩ := hs
|
||||
subst hr hs
|
||||
simpa using w.boundFst_neq_boundSnd r s
|
||||
· obtain ⟨r, hr⟩ := hr
|
||||
subst hr hs
|
||||
simp only [Fin.snoc_castSucc, Fin.snoc_last, ne_eq]
|
||||
have hn := h1 r
|
||||
omega
|
||||
· obtain ⟨s, hs⟩ := hs
|
||||
subst hr hs
|
||||
simp only [Fin.snoc_last, Fin.snoc_castSucc, ne_eq]
|
||||
exact (h2i s).symm
|
||||
· subst hr hs
|
||||
simp only [Fin.snoc_last, ne_eq]
|
||||
omega
|
||||
|
||||
/-- Casts a Wick contraction from `WickContract str b1 b2` to `WickContract str b1' b2'` with a
|
||||
proof that `b1 = b1'` and `b2 = b2'`, and that they are defined from the same `k = k'`. -/
|
||||
def castMaps {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final}
|
||||
{k k' : ℕ} {b1 b2 : Fin k → Fin n} {b1' b2' : Fin k' → Fin n}
|
||||
(hk : k = k')
|
||||
(hb1 : b1 = b1' ∘ Fin.cast hk) (hb2 : b2 = b2' ∘ Fin.cast hk) (w : WickContract str b1 b2) :
|
||||
WickContract str b1' b2' :=
|
||||
cast (by subst hk; rfl) (hb2 ▸ hb1 ▸ w)
|
||||
|
||||
@[simp]
|
||||
lemma castMaps_rfl {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n} (w : WickContract str b1 b2) :
|
||||
castMaps rfl rfl rfl w = w := rfl
|
||||
|
||||
lemma mem_snoc' {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final}
|
||||
{k : ℕ} {b1' b2' : Fin k → Fin n} :
|
||||
(w : WickContract str b1' b2') →
|
||||
{k' : ℕ} → (hk' : k'.succ = k) →
|
||||
(b1 b2 : Fin k' → Fin n) → (i j : Fin n) → (h : c j = ξ (c i)) →
|
||||
(hilej : i < j) → (hb1 : ∀ r, b1 r < i) → (hb2i : ∀ r, b2 r ≠ i) → (hb2j : ∀ r, b2 r ≠ j) →
|
||||
(hb1' : Fin.snoc b1 i = b1' ∘ Fin.cast hk') →
|
||||
(hb2' : Fin.snoc b2 j = b2' ∘ Fin.cast hk') →
|
||||
∃ (w' : WickContract str b1 b2), w = castMaps hk' hb1' hb2' (
|
||||
contr i j h hilej hb1 hb2i hb2j w') := fun
|
||||
| string => fun hk' => by
|
||||
simp at hk'
|
||||
| contr i' j' h' hilej' hb1' hb2i' hb2j' w' => by
|
||||
intro hk b1 b2 i j h hilej hb1 hb2i hb2j hb1' hb2'
|
||||
rename_i k' k b1' b2' f
|
||||
have hk2 : k' = k := Nat.succ_inj'.mp hk
|
||||
subst hk2
|
||||
simp_all
|
||||
have hb2'' : b2 = b2' := by
|
||||
funext k
|
||||
trans (@Fin.snoc k' (fun _ => Fin n) b2 j) (Fin.castSucc k)
|
||||
· simp
|
||||
· rw [hb2']
|
||||
simp
|
||||
have hb1'' : b1 = b1' := by
|
||||
funext k
|
||||
trans (@Fin.snoc k' (fun _ => Fin n) b1 i) (Fin.castSucc k)
|
||||
· simp
|
||||
· rw [hb1']
|
||||
simp
|
||||
have hi : i = i' := by
|
||||
trans (@Fin.snoc k' (fun _ => Fin n) b1 i) (Fin.last k')
|
||||
· simp
|
||||
· rw [hb1']
|
||||
simp
|
||||
have hj : j = j' := by
|
||||
trans (@Fin.snoc k' (fun _ => Fin n) b2 j) (Fin.last k')
|
||||
· simp
|
||||
· rw [hb2']
|
||||
simp
|
||||
subst hb1'' hb2'' hi hj
|
||||
simp
|
||||
|
||||
lemma mem_snoc {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n}
|
||||
(i j : Fin n) (h : c j = ξ (c i)) (hilej : i < j) (hb1 : ∀ r, b1 r < i)
|
||||
(hb2i : ∀ r, b2 r ≠ i) (hb2j : ∀ r, b2 r ≠ j)
|
||||
(w : WickContract str (Fin.snoc b1 i) (Fin.snoc b2 j)) :
|
||||
∃ (w' : WickContract str b1 b2), w = contr i j h hilej hb1 hb2i hb2j w' := by
|
||||
exact mem_snoc' w rfl b1 b2 i j h hilej hb1 hb2i hb2j rfl rfl
|
||||
|
||||
lemma is_subsingleton {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n} :
|
||||
Subsingleton (WickContract str b1 b2) := Subsingleton.intro fun w1 w2 => by
|
||||
induction k with
|
||||
| zero =>
|
||||
have hb1 : b1 = Fin.elim0 := Subsingleton.elim _ _
|
||||
have hb2 : b2 = Fin.elim0 := Subsingleton.elim _ _
|
||||
subst hb1 hb2
|
||||
match w1, w2 with
|
||||
| string, string => rfl
|
||||
| succ k hI =>
|
||||
match w1, w2 with
|
||||
| contr i j h hilej hb1 hb2i hb2j w, w2 =>
|
||||
let ⟨w', hw'⟩ := mem_snoc i j h hilej hb1 hb2i hb2j w2
|
||||
rw [hw']
|
||||
apply congrArg (contr i j _ _ _ _ _) (hI w w')
|
||||
|
||||
lemma eq_snoc_castSucc {k n : ℕ} (b1 : Fin k.succ → Fin n) :
|
||||
b1 = Fin.snoc (b1 ∘ Fin.castSucc) (b1 (Fin.last k)) := by
|
||||
funext i
|
||||
rcases Fin.eq_castSucc_or_eq_last i with h1 | h1
|
||||
· obtain ⟨i, rfl⟩ := h1
|
||||
simp
|
||||
· subst h1
|
||||
simp
|
||||
|
||||
/-- The construction of a Wick contraction from maps `b1 b2 : Fin k → Fin n`, with the former
|
||||
giving the first index to be contracted, and the latter the second index. These
|
||||
maps must satisfy a series of conditions. -/
|
||||
def fromMaps {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final}
|
||||
{k : ℕ} (b1 b2 : Fin k → Fin n)
|
||||
(hi : ∀ i, c (b2 i) = ξ (c (b1 i)))
|
||||
(hb1ltb2 : ∀ i, b1 i < b2 i)
|
||||
(hb1 : StrictMono b1)
|
||||
(hb1neb2 : ∀ r1 r2, b1 r1 ≠ b2 r2)
|
||||
(hb2 : Function.Injective b2) :
|
||||
WickContract str b1 b2 := by
|
||||
match k with
|
||||
| 0 =>
|
||||
refine castMaps ?_ ?_ ?_ string
|
||||
· rfl
|
||||
· exact funext (fun i => Fin.elim0 i)
|
||||
· exact funext (fun i => Fin.elim0 i)
|
||||
| Nat.succ k =>
|
||||
refine castMaps rfl (eq_snoc_castSucc b1).symm (eq_snoc_castSucc b2).symm
|
||||
(contr (b1 (Fin.last k)) (b2 (Fin.last k))
|
||||
(hi (Fin.last k))
|
||||
(hb1ltb2 (Fin.last k))
|
||||
(fun r => hb1 (Fin.castSucc_lt_last r))
|
||||
(fun r a => hb1neb2 (Fin.last k) r.castSucc a.symm)
|
||||
(fun r => hb2.eq_iff.mp.mt (Fin.ne_last_of_lt (Fin.castSucc_lt_last r)))
|
||||
(fromMaps (b1 ∘ Fin.castSucc) (b2 ∘ Fin.castSucc) (fun i => hi (Fin.castSucc i))
|
||||
(fun i => hb1ltb2 (Fin.castSucc i)) (StrictMono.comp hb1 Fin.strictMono_castSucc)
|
||||
?_ ?_))
|
||||
· exact fun r1 r2 => hb1neb2 r1.castSucc r2.castSucc
|
||||
· exact Function.Injective.comp hb2 (Fin.castSucc_injective k)
|
||||
|
||||
/-- Given a Wick contraction with `k.succ` contractions, returns the Wick contraction with
|
||||
`k` contractions by dropping the last contraction (defined by the first index contracted). -/
|
||||
def dropLast {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k.succ → Fin n}
|
||||
(w : WickContract str b1 b2) : WickContract str (b1 ∘ Fin.castSucc) (b2 ∘ Fin.castSucc) :=
|
||||
fromMaps (b1 ∘ Fin.castSucc) (b2 ∘ Fin.castSucc)
|
||||
(fun i => color_boundSnd_eq_dual_boundFst w i.castSucc)
|
||||
(fun i => boundFst_lt_boundSnd w i.castSucc)
|
||||
(StrictMono.comp w.boundFst_strictMono Fin.strictMono_castSucc)
|
||||
(fun r1 r2 => boundFst_neq_boundSnd w r1.castSucc r2.castSucc)
|
||||
(Function.Injective.comp w.boundSnd_injective (Fin.castSucc_injective k))
|
||||
|
||||
lemma eq_from_maps {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2) :
|
||||
w = fromMaps w.boundFst w.boundSnd w.color_boundSnd_eq_dual_boundFst
|
||||
w.boundFst_lt_boundSnd w.boundFst_strictMono w.boundFst_neq_boundSnd
|
||||
w.boundSnd_injective := is_subsingleton.allEq w _
|
||||
|
||||
lemma eq_dropLast_contr {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k.succ → Fin n} (w : WickContract str b1 b2) :
|
||||
w = castMaps rfl (eq_snoc_castSucc b1).symm (eq_snoc_castSucc b2).symm
|
||||
(contr (b1 (Fin.last k)) (b2 (Fin.last k))
|
||||
(w.color_boundSnd_eq_dual_boundFst (Fin.last k))
|
||||
(w.boundFst_lt_boundSnd (Fin.last k))
|
||||
(fun r => w.boundFst_strictMono (Fin.castSucc_lt_last r))
|
||||
(fun r a => w.boundFst_neq_boundSnd (Fin.last k) r.castSucc a.symm)
|
||||
(fun r => w.boundSnd_injective.eq_iff.mp.mt (Fin.ne_last_of_lt (Fin.castSucc_lt_last r)))
|
||||
(dropLast w)) := by
|
||||
rw [eq_from_maps w]
|
||||
rfl
|
||||
|
||||
/-- Wick contractions of a given Wick string with `k` different contractions. -/
|
||||
def Level {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} (str : WickString i c o final) (k : ℕ) : Type :=
|
||||
Σ (b1 : Fin k → Fin n) (b2 : Fin k → Fin n), WickContract str b1 b2
|
||||
|
||||
/-- There is a finite number of Wick contractions with no contractions. In particular,
|
||||
this is just the original Wick string. -/
|
||||
instance levelZeroFintype {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} (str : WickString i c o final) :
|
||||
Fintype (Level str 0) where
|
||||
elems := {⟨Fin.elim0, Fin.elim0, WickContract.string⟩}
|
||||
complete := by
|
||||
intro x
|
||||
match x with
|
||||
| ⟨b1, b2, w⟩ =>
|
||||
have hb1 : b1 = Fin.elim0 := Subsingleton.elim _ _
|
||||
have hb2 : b2 = Fin.elim0 := Subsingleton.elim _ _
|
||||
subst hb1 hb2
|
||||
simp only [Finset.mem_singleton]
|
||||
rw [is_subsingleton.allEq w string]
|
||||
|
||||
/-- The pairs of additional indices which can be contracted given a Wick contraction. -/
|
||||
structure ContrPair {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2) where
|
||||
/-- The first index in the contraction pair. -/
|
||||
i : Fin n
|
||||
/-- The second index in the contraction pair. -/
|
||||
j : Fin n
|
||||
h : c j = ξ (c i)
|
||||
hilej : i < j
|
||||
hb1 : ∀ r, b1 r < i
|
||||
hb2i : ∀ r, b2 r ≠ i
|
||||
hb2j : ∀ r, b2 r ≠ j
|
||||
|
||||
/-- The pairs of additional indices which can be contracted, given an existing wick contraction,
|
||||
is equivalent to the a subtype of `Fin n × Fin n` defined by certain conditions equivalent
|
||||
to the conditions appearing in `ContrPair`. -/
|
||||
def contrPairEquivSubtype {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n} (w : WickContract str b1 b2) :
|
||||
ContrPair w ≃ {x : Fin n × Fin n // c x.2 = ξ (c x.1) ∧ x.1 < x.2 ∧
|
||||
(∀ r, b1 r < x.1) ∧ (∀ r, b2 r ≠ x.1) ∧ (∀ r, b2 r ≠ x.2)} where
|
||||
toFun cp := ⟨⟨cp.i, cp.j⟩, ⟨cp.h, cp.hilej, cp.hb1, cp.hb2i, cp.hb2j⟩⟩
|
||||
invFun x :=
|
||||
match x with
|
||||
| ⟨⟨i, j⟩, ⟨h, hilej, hb1, hb2i, hb2j⟩⟩ => ⟨i, j, h, hilej, hb1, hb2i, hb2j⟩
|
||||
left_inv x := by rfl
|
||||
right_inv x := by
|
||||
simp_all only [ne_eq]
|
||||
obtain ⟨val, property⟩ := x
|
||||
obtain ⟨fst, snd⟩ := val
|
||||
obtain ⟨left, right⟩ := property
|
||||
obtain ⟨left_1, right⟩ := right
|
||||
obtain ⟨left_2, right⟩ := right
|
||||
obtain ⟨left_3, right⟩ := right
|
||||
simp_all only [ne_eq]
|
||||
|
||||
lemma heq_eq {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 b1' b2' : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2)
|
||||
(w' : WickContract str b1' b2') (h1 : b1 = b1') (h2 : b2 = b2') : HEq w w':= by
|
||||
subst h1 h2
|
||||
simp only [heq_eq_eq]
|
||||
exact is_subsingleton.allEq w w'
|
||||
|
||||
/-- The equivalence between Wick contractions consisting of `k.succ` contractions and
|
||||
those with `k` contractions paired with a suitable contraction pair. -/
|
||||
def levelSuccEquiv {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} (str : WickString i c o final) (k : ℕ) :
|
||||
Level str k.succ ≃ (w : Level str k) × ContrPair w.2.2 where
|
||||
toFun w :=
|
||||
match w with
|
||||
| ⟨b1, b2, w⟩ =>
|
||||
⟨⟨b1 ∘ Fin.castSucc, b2 ∘ Fin.castSucc, dropLast w⟩,
|
||||
⟨b1 (Fin.last k), b2 (Fin.last k),
|
||||
w.color_boundSnd_eq_dual_boundFst (Fin.last k),
|
||||
w.boundFst_lt_boundSnd (Fin.last k),
|
||||
fun r => w.boundFst_strictMono (Fin.castSucc_lt_last r),
|
||||
fun r a => w.boundFst_neq_boundSnd (Fin.last k) r.castSucc a.symm,
|
||||
fun r => w.boundSnd_injective.eq_iff.mp.mt (Fin.ne_last_of_lt (Fin.castSucc_lt_last r))⟩⟩
|
||||
invFun w :=
|
||||
match w with
|
||||
| ⟨⟨b1, b2, w⟩, cp⟩ => ⟨Fin.snoc b1 cp.i, Fin.snoc b2 cp.j,
|
||||
contr cp.i cp.j cp.h cp.hilej cp.hb1 cp.hb2i cp.hb2j w⟩
|
||||
left_inv w := by
|
||||
match w with
|
||||
| ⟨b1, b2, w⟩ =>
|
||||
simp only [Nat.succ_eq_add_one, Function.comp_apply]
|
||||
congr
|
||||
· exact Eq.symm (eq_snoc_castSucc b1)
|
||||
· funext b2
|
||||
congr
|
||||
exact Eq.symm (eq_snoc_castSucc b1)
|
||||
· exact Eq.symm (eq_snoc_castSucc b2)
|
||||
· rw [eq_dropLast_contr w]
|
||||
simp only [castMaps, Nat.succ_eq_add_one, cast_eq, heq_eqRec_iff_heq, heq_eq_eq,
|
||||
contr.injEq]
|
||||
rfl
|
||||
right_inv w := by
|
||||
match w with
|
||||
| ⟨⟨b1, b2, w⟩, cp⟩ =>
|
||||
simp only [Nat.succ_eq_add_one, Fin.snoc_last, Sigma.mk.inj_iff]
|
||||
apply And.intro
|
||||
· congr
|
||||
· exact Fin.snoc_comp_castSucc
|
||||
· funext b2
|
||||
congr
|
||||
exact Fin.snoc_comp_castSucc
|
||||
· exact Fin.snoc_comp_castSucc
|
||||
· exact heq_eq _ _ Fin.snoc_comp_castSucc Fin.snoc_comp_castSucc
|
||||
· congr
|
||||
· exact Fin.snoc_comp_castSucc
|
||||
· exact Fin.snoc_comp_castSucc
|
||||
· exact heq_eq _ _ Fin.snoc_comp_castSucc Fin.snoc_comp_castSucc
|
||||
· simp
|
||||
· simp
|
||||
· simp
|
||||
|
||||
/-- The sum of `boundFst` and `boundSnd`, giving on `Sum.inl k` the first index
|
||||
in the `k`th contraction, and on `Sum.inr k` the second index in the `k`th contraction. -/
|
||||
def bound {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2) : Fin k ⊕ Fin k → Fin n :=
|
||||
Sum.elim w.boundFst w.boundSnd
|
||||
|
||||
/-- On `Sum.inl k` the map `bound` acts via `boundFst`. -/
|
||||
@[simp]
|
||||
lemma bound_inl {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2) (i : Fin k) : w.bound (Sum.inl i) = w.boundFst i := rfl
|
||||
|
||||
/-- On `Sum.inr k` the map `bound` acts via `boundSnd`. -/
|
||||
@[simp]
|
||||
lemma bound_inr {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2) (i : Fin k) : w.bound (Sum.inr i) = w.boundSnd i := rfl
|
||||
|
||||
lemma bound_injection {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2) : Function.Injective w.bound := by
|
||||
intro x y h
|
||||
match x, y with
|
||||
| Sum.inl x, Sum.inl y =>
|
||||
simp only [bound_inl] at h
|
||||
simpa using (StrictMono.injective w.boundFst_strictMono).eq_iff.mp h
|
||||
| Sum.inr x, Sum.inr y =>
|
||||
simp only [bound_inr] at h
|
||||
simpa using w.boundSnd_injective h
|
||||
| Sum.inl x, Sum.inr y =>
|
||||
simp only [bound_inl, bound_inr] at h
|
||||
exact False.elim (w.boundFst_neq_boundSnd x y h)
|
||||
| Sum.inr x, Sum.inl y =>
|
||||
simp only [bound_inr, bound_inl] at h
|
||||
exact False.elim (w.boundFst_neq_boundSnd y x h.symm)
|
||||
|
||||
lemma bound_le_total {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2) : 2 * k ≤ n := by
|
||||
refine Fin.nonempty_embedding_iff.mp ⟨w.bound ∘ finSumFinEquiv.symm ∘ Fin.cast (Nat.two_mul k),
|
||||
?_⟩
|
||||
apply Function.Injective.comp (Function.Injective.comp _ finSumFinEquiv.symm.injective)
|
||||
· exact Fin.cast_injective (Nat.two_mul k)
|
||||
· exact bound_injection w
|
||||
|
||||
/-- The list of fields (indexed by `Fin n`) in a Wick contraction which are not bound,
|
||||
i.e. which do not appear in any contraction. -/
|
||||
def unboundList {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2) : List (Fin n) :=
|
||||
List.filter (fun i => decide (∀ r, w.bound r ≠ i)) (List.finRange n)
|
||||
|
||||
/-- THe list of field positions which are not contracted has no duplicates. -/
|
||||
lemma unboundList_nodup {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2) : (w.unboundList).Nodup :=
|
||||
List.Nodup.filter _ (List.nodup_finRange n)
|
||||
|
||||
/-- The length of the `unboundList` is equal to `n - 2 * k`. That is
|
||||
the total number of fields minus the number of contracted fields. -/
|
||||
lemma unboundList_length {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n} (w : WickContract str b1 b2) :
|
||||
w.unboundList.length = n - 2 * k := by
|
||||
rw [← List.Nodup.dedup w.unboundList_nodup]
|
||||
rw [← List.card_toFinset, unboundList]
|
||||
rw [List.toFinset_filter, List.toFinset_finRange]
|
||||
have hn := Finset.filter_card_add_filter_neg_card_eq_card (s := Finset.univ)
|
||||
(fun (i : Fin n) => i ∈ Finset.image w.bound Finset.univ)
|
||||
have hn' :(Finset.filter (fun i => i ∈ Finset.image w.bound Finset.univ) Finset.univ).card =
|
||||
(Finset.image w.bound Finset.univ).card := by
|
||||
refine Finset.card_equiv (Equiv.refl _) fun i => ?_
|
||||
simp
|
||||
rw [hn'] at hn
|
||||
rw [Finset.card_image_of_injective] at hn
|
||||
simp only [Finset.card_univ, Fintype.card_sum, Fintype.card_fin,
|
||||
Finset.mem_univ, true_and, Sum.exists, bound_inl, bound_inr, not_or, not_exists] at hn
|
||||
have hn'' : (Finset.filter (fun a => a ∉ Finset.image w.bound Finset.univ) Finset.univ).card =
|
||||
n - 2 * k := by
|
||||
omega
|
||||
rw [← hn'']
|
||||
congr
|
||||
funext x
|
||||
simp only [ne_eq, Sum.forall, bound_inl, bound_inr, Bool.decide_and, Bool.and_eq_true,
|
||||
decide_eq_true_eq, Finset.mem_image, Finset.mem_univ, true_and, Sum.exists, not_or, not_exists]
|
||||
exact bound_injection w
|
||||
|
||||
lemma unboundList_sorted {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n} (w : WickContract str b1 b2) :
|
||||
List.Sorted (fun i j => i < j) w.unboundList :=
|
||||
List.Pairwise.sublist (List.filter_sublist (List.finRange n)) (List.pairwise_lt_finRange n)
|
||||
|
||||
/-- The ordered embedding giving the fields which are not bound in a contraction. These
|
||||
are the fields that will appear in a normal operator in Wick's theorem. -/
|
||||
def unbound {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
||||
{no : ℕ} {o : Fin no → 𝓔} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2) : Fin (n - 2 * k) ↪o Fin n where
|
||||
toFun := w.unboundList.get ∘ Fin.cast w.unboundList_length.symm
|
||||
inj' := by
|
||||
apply Function.Injective.comp
|
||||
· rw [← List.nodup_iff_injective_get]
|
||||
exact w.unboundList_nodup
|
||||
· exact Fin.cast_injective _
|
||||
map_rel_iff' := by
|
||||
refine fun {a b} => StrictMono.le_iff_le ?_
|
||||
rw [Function.Embedding.coeFn_mk]
|
||||
apply StrictMono.comp
|
||||
· exact List.Sorted.get_strictMono w.unboundList_sorted
|
||||
· exact fun ⦃a b⦄ a => a
|
||||
|
||||
informal_lemma level_fintype where
|
||||
math :≈ "Level is a finite type, as there are only finitely many ways to contract a Wick string."
|
||||
deps :≈ [``Level]
|
||||
|
||||
informal_definition HasEqualTimeContractions where
|
||||
math :≈ "The condition for a Wick contraction to have two fields contracted
|
||||
which are of equal time, i.e. come from the same vertex."
|
||||
deps :≈ [``WickContract]
|
||||
|
||||
informal_definition IsConnected where
|
||||
math :≈ "The condition for a full Wick contraction that for any two vertices
|
||||
(including external vertices) are connected by contractions."
|
||||
deps :≈ [``WickContract]
|
||||
|
||||
informal_definition HasVacuumContributions where
|
||||
math :≈ "The condition for a full Wick contraction to have a vacuum contribution."
|
||||
deps :≈ [``WickContract]
|
||||
|
||||
informal_definition IsOneParticleIrreducible where
|
||||
math :≈ "The condition for a full Wick contraction to be one-particle irreducible."
|
||||
deps :≈ [``WickContract]
|
||||
|
||||
end WickContract
|
||||
|
||||
end TwoComplexScalar
|
35
HepLean/PerturbationTheory/Wick/MomentumSpace.lean
Normal file
35
HepLean/PerturbationTheory/Wick/MomentumSpace.lean
Normal file
|
@ -0,0 +1,35 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.Wick.Contract
|
||||
/-!
|
||||
|
||||
# Wick contraction in momentum space
|
||||
|
||||
Every complete Wick contraction leads to a function on momenta, following
|
||||
the Feynman rules.
|
||||
|
||||
-/
|
||||
|
||||
namespace Wick
|
||||
|
||||
informal_definition toMomentumTensorTree where
|
||||
math :≈ "A function which takes a Wick contraction,
|
||||
and corresponding momenta, and outputs the corresponding
|
||||
tensor tree associated with that contraction. The rules for how this is done
|
||||
is given by the `Feynman rules`.
|
||||
The appropriate ring to consider here is a ring permitting the abstract notion of a
|
||||
Dirac delta function. "
|
||||
ref :≈ "
|
||||
Some references for Feynman rules are:
|
||||
- QED Feynman rules: http://hitoshi.berkeley.edu/public_html/129A/point.pdf,
|
||||
- Weyl Fermions: http://scipp.ucsc.edu/~haber/susybook/feyn115.pdf."
|
||||
|
||||
informal_definition toMomentumTensor where
|
||||
math :≈ "The tensor associated to `toMomentumTensorTree` associated with a Wick contraction,
|
||||
and corresponding internal momenta, and external momenta."
|
||||
deps :≈ [``toMomentumTensorTree]
|
||||
|
||||
end Wick
|
25
HepLean/PerturbationTheory/Wick/PositionSpace.lean
Normal file
25
HepLean/PerturbationTheory/Wick/PositionSpace.lean
Normal file
|
@ -0,0 +1,25 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.FeynmanDiagrams.Basic
|
||||
import HepLean.Meta.Informal
|
||||
/-!
|
||||
|
||||
# Wick contraction in position space
|
||||
|
||||
Every complete Wick contraction leads to a function on positions, following
|
||||
the Feynman rules.
|
||||
|
||||
## Further reading
|
||||
|
||||
The following reference provides a good resource for Wick contractions of external fields.
|
||||
- http://www.dylanjtemples.com:82/solutions/QFT_Solution_I-6.pdf
|
||||
|
||||
-/
|
||||
|
||||
namespace Wick
|
||||
|
||||
|
||||
end Wick
|
39
HepLean/PerturbationTheory/Wick/Species.lean
Normal file
39
HepLean/PerturbationTheory/Wick/Species.lean
Normal file
|
@ -0,0 +1,39 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.FeynmanDiagrams.Basic
|
||||
import HepLean.Meta.Informal
|
||||
/-!
|
||||
|
||||
# Wick Species
|
||||
|
||||
Note: There is very likely a much better name for what we here call a Wick Species.
|
||||
|
||||
A Wick Species is a structure containing the basic information needed to write wick contractions
|
||||
for a theory, and calculate their corresponding Feynman diagrams.
|
||||
|
||||
-/
|
||||
|
||||
/-! TODO: There should be some sort of notion of a group action on a Wick Species. -/
|
||||
namespace Wick
|
||||
|
||||
/-- The basic structure needed to write down Wick contractions for a theory and
|
||||
calculate the corresponding Feynman diagrams.
|
||||
|
||||
WARNING: This definition is not yet complete.
|
||||
-/
|
||||
structure Species where
|
||||
/-- The color of Field operators which appear in a theory. -/
|
||||
𝓕 : Type
|
||||
/-- The map taking a field operator to its dual operator. -/
|
||||
ξ : 𝓕 → 𝓕
|
||||
/-- The condition that `ξ` is an involution. -/
|
||||
ξ_involutive : Function.Involutive ξ
|
||||
/-- The color of vertices which appear in a theory. -/
|
||||
𝓥 : Type
|
||||
/-- The edges each vertex corresponds to. -/
|
||||
𝓥Fields : 𝓥 → Σ n, Fin n → 𝓕
|
||||
|
||||
end Wick
|
196
HepLean/PerturbationTheory/Wick/String.lean
Normal file
196
HepLean/PerturbationTheory/Wick/String.lean
Normal file
|
@ -0,0 +1,196 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.Wick.Species
|
||||
/-!
|
||||
# Wick strings
|
||||
|
||||
Currently this file is only for an example of Wick strings, correpsonding to a
|
||||
theory with two complex scalar fields. The concepts will however generalize.
|
||||
|
||||
A wick string is defined to be a sequence of input fields,
|
||||
followed by a squence of vertices, followed by a sequence of output fields.
|
||||
|
||||
A wick string can be combined with an appropriate map to spacetime to produce a specific
|
||||
term in the ring of operators. This has yet to be implemented.
|
||||
|
||||
-/
|
||||
|
||||
namespace TwoComplexScalar
|
||||
open CategoryTheory
|
||||
open FeynmanDiagram
|
||||
open PreFeynmanRule
|
||||
|
||||
/-- The colors of edges which one can associate with a vertex for a theory
|
||||
with two complex scalar fields. -/
|
||||
inductive 𝓔 where
|
||||
/-- Corresponds to the first complex scalar field flowing out of a vertex. -/
|
||||
| complexScalarOut₁ : 𝓔
|
||||
/-- Corresponds to the first complex scalar field flowing into a vertex. -/
|
||||
| complexScalarIn₁ : 𝓔
|
||||
/-- Corresponds to the second complex scalar field flowing out of a vertex. -/
|
||||
| complexScalarOut₂ : 𝓔
|
||||
/-- Corresponds to the second complex scalar field flowing into a vertex. -/
|
||||
| complexScalarIn₂ : 𝓔
|
||||
|
||||
/-- The map taking each color to it's dual, specifying how we can contract edges. -/
|
||||
def ξ : 𝓔 → 𝓔
|
||||
| 𝓔.complexScalarOut₁ => 𝓔.complexScalarIn₁
|
||||
| 𝓔.complexScalarIn₁ => 𝓔.complexScalarOut₁
|
||||
| 𝓔.complexScalarOut₂ => 𝓔.complexScalarIn₂
|
||||
| 𝓔.complexScalarIn₂ => 𝓔.complexScalarOut₂
|
||||
|
||||
/-- The function `ξ` is an involution. -/
|
||||
lemma ξ_involutive : Function.Involutive ξ := by
|
||||
intro x
|
||||
match x with
|
||||
| 𝓔.complexScalarOut₁ => rfl
|
||||
| 𝓔.complexScalarIn₁ => rfl
|
||||
| 𝓔.complexScalarOut₂ => rfl
|
||||
| 𝓔.complexScalarIn₂ => rfl
|
||||
|
||||
/-- The vertices associated with two complex scalars.
|
||||
We call this type, the type of vertex colors. -/
|
||||
inductive 𝓥 where
|
||||
| φ₁φ₁φ₂φ₂ : 𝓥
|
||||
| φ₁φ₁φ₁φ₁ : 𝓥
|
||||
| φ₂φ₂φ₂φ₂ : 𝓥
|
||||
|
||||
/-- To each vertex, the association of the number of edges. -/
|
||||
@[nolint unusedArguments]
|
||||
def 𝓥NoEdges : 𝓥 → ℕ := fun _ => 4
|
||||
|
||||
/-- To each vertex, associates the indexing map of half-edges associated with that edge. -/
|
||||
def 𝓥Edges (v : 𝓥) : Fin (𝓥NoEdges v) → 𝓔 :=
|
||||
match v with
|
||||
| 𝓥.φ₁φ₁φ₂φ₂ => fun i =>
|
||||
match i with
|
||||
| (0 : Fin 4)=> 𝓔.complexScalarOut₁
|
||||
| (1 : Fin 4) => 𝓔.complexScalarIn₁
|
||||
| (2 : Fin 4) => 𝓔.complexScalarOut₂
|
||||
| (3 : Fin 4) => 𝓔.complexScalarIn₂
|
||||
| 𝓥.φ₁φ₁φ₁φ₁ => fun i =>
|
||||
match i with
|
||||
| (0 : Fin 4)=> 𝓔.complexScalarOut₁
|
||||
| (1 : Fin 4) => 𝓔.complexScalarIn₁
|
||||
| (2 : Fin 4) => 𝓔.complexScalarOut₁
|
||||
| (3 : Fin 4) => 𝓔.complexScalarIn₁
|
||||
| 𝓥.φ₂φ₂φ₂φ₂ => fun i =>
|
||||
match i with
|
||||
| (0 : Fin 4)=> 𝓔.complexScalarOut₂
|
||||
| (1 : Fin 4) => 𝓔.complexScalarIn₂
|
||||
| (2 : Fin 4) => 𝓔.complexScalarOut₂
|
||||
| (3 : Fin 4) => 𝓔.complexScalarIn₂
|
||||
|
||||
/-- A helper function for `WickString`. It is used to seperate incoming, vertex, and
|
||||
outgoing nodes. -/
|
||||
inductive WickStringLast where
|
||||
| incoming : WickStringLast
|
||||
| vertex : WickStringLast
|
||||
| outgoing : WickStringLast
|
||||
| final : WickStringLast
|
||||
|
||||
open WickStringLast
|
||||
|
||||
/-- A wick string is a representation of a string of fields from a theory.
|
||||
The use of vertices in the Wick string
|
||||
allows us to identify which fields have the same space-time coordinate.
|
||||
|
||||
Note: Fields are added to `c` from right to left - matching how we would write this on
|
||||
pen and paper.
|
||||
|
||||
The incoming and outgoing fields should be viewed as asymptotic fields.
|
||||
While the internal fields associated with vertices are fields at fixed space-time points.
|
||||
-/
|
||||
inductive WickString : {ni : ℕ} → (i : Fin ni → 𝓔) → {n : ℕ} → (c : Fin n → 𝓔) →
|
||||
{no : ℕ} → (o : Fin no → 𝓔) → WickStringLast → Type where
|
||||
| empty : WickString Fin.elim0 Fin.elim0 Fin.elim0 incoming
|
||||
| incoming {n ni no : ℕ} {i : Fin ni → 𝓔} {c : Fin n → 𝓔}
|
||||
{o : Fin no → 𝓔} (w : WickString i c o incoming) (e : 𝓔) :
|
||||
WickString (Fin.cons e i) (Fin.cons e c) o incoming
|
||||
| endIncoming {n ni no : ℕ} {i : Fin ni → 𝓔} {c : Fin n → 𝓔}
|
||||
{o : Fin no → 𝓔} (w : WickString i c o incoming) : WickString i c o vertex
|
||||
| vertex {n ni no : ℕ} {i : Fin ni → 𝓔} {c : Fin n → 𝓔}
|
||||
{o : Fin no → 𝓔} (w : WickString i c o vertex) (v : 𝓥) :
|
||||
WickString i (Fin.append (𝓥Edges v) c) o vertex
|
||||
| endVertex {n ni no : ℕ} {i : Fin ni → 𝓔} {c : Fin n → 𝓔}
|
||||
{o : Fin no → 𝓔} (w : WickString i c o vertex) : WickString i c o outgoing
|
||||
| outgoing {n ni no : ℕ} {i : Fin ni → 𝓔} {c : Fin n → 𝓔}
|
||||
{o : Fin no → 𝓔} (w : WickString i c o outgoing) (e : 𝓔) :
|
||||
WickString i (Fin.cons e c) (Fin.cons e o) outgoing
|
||||
| endOutgoing {n ni no : ℕ} {i : Fin ni → 𝓔} {c : Fin n → 𝓔}
|
||||
{o : Fin no → 𝓔} (w : WickString i c o outgoing) : WickString i c o final
|
||||
|
||||
namespace WickString
|
||||
|
||||
/-- The number of nodes in a Wick string. This is used to help prove termination. -/
|
||||
def size {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔} {no : ℕ} {o : Fin no → 𝓔}
|
||||
{f : WickStringLast} : WickString i c o f → ℕ := fun
|
||||
| empty => 0
|
||||
| incoming w e => size w + 1
|
||||
| endIncoming w => size w + 1
|
||||
| vertex w v => size w + 1
|
||||
| endVertex w => size w + 1
|
||||
| outgoing w e => size w + 1
|
||||
| endOutgoing w => size w + 1
|
||||
|
||||
/-- The number of vertices in a Wick string. This does NOT include external vertices. -/
|
||||
def numIntVertex {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔} {no : ℕ} {o : Fin no → 𝓔}
|
||||
{f : WickStringLast} : WickString i c o f → ℕ := fun
|
||||
| empty => 0
|
||||
| incoming w e => numIntVertex w
|
||||
| endIncoming w => numIntVertex w
|
||||
| vertex w v => numIntVertex w + 1
|
||||
| endVertex w => numIntVertex w
|
||||
| outgoing w e => numIntVertex w
|
||||
| endOutgoing w => numIntVertex w
|
||||
|
||||
/-- The vertices present in a Wick string. This does NOT include external vertices. -/
|
||||
def intVertex {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔} {no : ℕ} {o : Fin no → 𝓔}
|
||||
{f : WickStringLast} : (w : WickString i c o f) → Fin w.numIntVertex → 𝓥 := fun
|
||||
| empty => Fin.elim0
|
||||
| incoming w e => intVertex w
|
||||
| endIncoming w => intVertex w
|
||||
| vertex w v => Fin.cons v (intVertex w)
|
||||
| endVertex w => intVertex w
|
||||
| outgoing w e => intVertex w
|
||||
| endOutgoing w => intVertex w
|
||||
|
||||
informal_definition intExtVertex where
|
||||
math :≈ "The vertices present in a Wick string, including external vertices."
|
||||
deps :≈ [``WickString]
|
||||
|
||||
informal_definition fieldToIntExtVertex where
|
||||
math :≈ "A function which takes a field and returns the internal or
|
||||
external vertex it is associated with."
|
||||
deps :≈ [``WickString]
|
||||
|
||||
informal_definition exponentialPrefactor where
|
||||
math :≈ "The combinatorical prefactor from the expansion of the
|
||||
exponential associated with a Wick string."
|
||||
deps :≈ [``intVertex, ``WickString]
|
||||
|
||||
informal_definition vertexPrefactor where
|
||||
math :≈ "The prefactor arising from the coefficent of vertices in the
|
||||
Lagrangian. This should not take account of the exponential prefactor."
|
||||
deps :≈ [``intVertex, ``WickString]
|
||||
|
||||
informal_definition minNoLoops where
|
||||
math :≈ "The minimum number of loops a Feynman diagram based on a given Wick string can have.
|
||||
There should be a lemma proving this statement."
|
||||
deps :≈ [``WickString]
|
||||
|
||||
informal_definition LoopLevel where
|
||||
math :≈ "The type of Wick strings for fixed input and output which may permit a Feynman diagram
|
||||
which have a number of loops less than or equal to some number."
|
||||
deps :≈ [``minNoLoops, ``WickString]
|
||||
|
||||
informal_lemma loopLevel_fintype where
|
||||
math :≈ "The instance of a finite type on `LoopLevel`."
|
||||
deps :≈ [``LoopLevel]
|
||||
|
||||
end WickString
|
||||
|
||||
end TwoComplexScalar
|
27
HepLean/PerturbationTheory/Wick/Theorem.lean
Normal file
27
HepLean/PerturbationTheory/Wick/Theorem.lean
Normal file
|
@ -0,0 +1,27 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.Wick.Species
|
||||
/-!
|
||||
|
||||
# Wick's theorem
|
||||
|
||||
Wick's theorem is related to a result in probability theory called Isserlis' theorem.
|
||||
|
||||
-/
|
||||
|
||||
namespace Wick
|
||||
open CategoryTheory
|
||||
open FeynmanDiagram
|
||||
open PreFeynmanRule
|
||||
|
||||
informal_lemma wicks_theorem where
|
||||
math :≈ "Wick's theorem for fields which are not normally ordered."
|
||||
|
||||
informal_lemma wicks_theorem_normal_order where
|
||||
math :≈ "Wick's theorem for which fields at the same space-time point are normally ordered."
|
||||
ref :≈ "https://www.physics.purdue.edu/~clarkt/Courses/Physics662/ps/qftch32.pdf"
|
||||
|
||||
end Wick
|
Loading…
Add table
Add a link
Reference in a new issue