refactor: Lint
This commit is contained in:
parent
5da7605301
commit
36752fa5c4
2 changed files with 13 additions and 13 deletions
|
@ -5,9 +5,9 @@ Authors: Joseph Tooby-Smith
|
|||
-/
|
||||
import Mathlib.Logic.Function.CompTypeclasses
|
||||
import Mathlib.Data.Real.Basic
|
||||
import Mathlib.Analysis.Normed.Field.Basic
|
||||
import Mathlib.CategoryTheory.Core
|
||||
import Mathlib.CategoryTheory.Types
|
||||
import Mathlib.Data.Fintype.BigOperators
|
||||
import Mathlib.Logic.Equiv.Fin
|
||||
import Mathlib.Tactic.FinCases
|
||||
/-!
|
||||
|
||||
# Real Lorentz Tensors
|
||||
|
@ -61,10 +61,9 @@ structure RealLorentzTensor (d : ℕ) (X : Type) where
|
|||
coord : RealLorentzTensor.IndexValue d color → ℝ
|
||||
|
||||
namespace RealLorentzTensor
|
||||
open Matrix CategoryTheory
|
||||
open Matrix
|
||||
universe u1
|
||||
variable {d : ℕ} {X Y Z : Type}
|
||||
variable (c : X → Colors)
|
||||
variable {d : ℕ} {X Y Z : Type} (c : X → Colors)
|
||||
|
||||
/-!
|
||||
|
||||
|
@ -144,7 +143,7 @@ def indexValueIso (d : ℕ) (f : X ≃ Y) {i : X → Colors} {j : Y → Colors}
|
|||
Equiv.piCongrLeft (fun y => RealLorentzTensor.ColorsIndex d (j y)) f
|
||||
|
||||
lemma indexValueIso_symm_apply' (d : ℕ) (f : X ≃ Y) {i : X → Colors} {j : Y → Colors}
|
||||
(h : i = j ∘ f) (y : IndexValue d j) (x : X) :
|
||||
(h : i = j ∘ f) (y : IndexValue d j) (x : X) :
|
||||
(indexValueIso d f h).symm y x = (colorsIndexCast (congrFun h x)).symm (y (f x)) := by
|
||||
rfl
|
||||
|
||||
|
@ -324,7 +323,7 @@ def UnmarkedIndexValue (T : Marked d X n) : Type :=
|
|||
instance [Fintype X] [DecidableEq X] (T : Marked d X n) : Fintype T.UnmarkedIndexValue :=
|
||||
Pi.fintype
|
||||
|
||||
instance [Fintype X] [DecidableEq X] (T : Marked d X n) : DecidableEq T.UnmarkedIndexValue :=
|
||||
instance [Fintype X] (T : Marked d X n) : DecidableEq T.UnmarkedIndexValue :=
|
||||
Fintype.decidablePiFintype
|
||||
|
||||
/-- The index values restricted to marked indices. -/
|
||||
|
@ -334,7 +333,7 @@ def MarkedIndexValue (T : Marked d X n) : Type :=
|
|||
instance [Fintype X] [DecidableEq X] (T : Marked d X n) : Fintype T.MarkedIndexValue :=
|
||||
Pi.fintype
|
||||
|
||||
instance [Fintype X] [DecidableEq X] (T : Marked d X n) : DecidableEq T.MarkedIndexValue :=
|
||||
instance [Fintype X] (T : Marked d X n) : DecidableEq T.MarkedIndexValue :=
|
||||
Fintype.decidablePiFintype
|
||||
|
||||
lemma color_eq_elim (T : Marked d X n) :
|
||||
|
|
|
@ -167,12 +167,13 @@ lemma toTensorRepMat_oneMarkedIndexValue_dual (T : Marked d X 1) (S : Marked d Y
|
|||
(oneMarkedIndexValue x) := by
|
||||
rw [toTensorRepMat_apply, toTensorRepMat_apply]
|
||||
erw [Finset.prod_singleton, Finset.prod_singleton]
|
||||
simp
|
||||
simp only [Fin.zero_eta, Fin.isValue, lorentzGroupIsGroup_inv]
|
||||
rw [colorMatrix_cast h, colorMatrix_dual_cast]
|
||||
rw [Matrix.reindex_apply, Matrix.reindex_apply]
|
||||
simp
|
||||
simp only [Fin.isValue, lorentzGroupIsGroup_inv, minkowskiMetric.dual_dual, Subtype.coe_eta,
|
||||
Equiv.symm_symm, Matrix.submatrix_apply]
|
||||
rw [colorMatrix_transpose]
|
||||
simp
|
||||
simp only [Fin.isValue, Matrix.transpose_apply]
|
||||
apply congrArg
|
||||
simp only [Fin.isValue, oneMarkedIndexValue, colorsIndexDualCast, Equiv.coe_fn_symm_mk,
|
||||
Equiv.symm_trans_apply, Equiv.symm_symm, Equiv.coe_fn_mk, Equiv.apply_symm_apply,
|
||||
|
@ -276,7 +277,7 @@ lemma lorentzAction_mapIso (f : X ≃ Y) (Λ : LorentzGroup d) (T : RealLorentzT
|
|||
rw [mapIso_apply_coord]
|
||||
rw [lorentzAction_smul_coord', lorentzAction_smul_coord']
|
||||
let is : IndexValue d T.color ≃ IndexValue d ((mapIso d f) T).color :=
|
||||
indexValueIso d f (by funext x ; simp)
|
||||
indexValueIso d f (by funext x; simp)
|
||||
rw [← Equiv.sum_comp is]
|
||||
refine Finset.sum_congr rfl (fun j _ => ?_)
|
||||
rw [mapIso_apply_coord]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue