docs: More acc documentation
This commit is contained in:
parent
d582979013
commit
371e402570
3 changed files with 11 additions and 1 deletions
|
@ -36,16 +36,19 @@ namespace SMNoGrav
|
|||
|
||||
variable {n : ℕ}
|
||||
|
||||
/-- The charges in `(SMNoGrav n).LinSols` satisfy the `SU(2)` anomaly-equation. -/
|
||||
lemma SU2Sol (S : (SMNoGrav n).LinSols) : accSU2 S.val = 0 := by
|
||||
have hS := S.linearSol
|
||||
simp only [SMNoGrav_numberLinear, SMNoGrav_linearACCs, Fin.isValue] at hS
|
||||
exact hS 0
|
||||
|
||||
/-- The charges in `(SMNoGrav n).LinSols` satisfy the `SU(3)` anomaly-equation. -/
|
||||
lemma SU3Sol (S : (SMNoGrav n).LinSols) : accSU3 S.val = 0 := by
|
||||
have hS := S.linearSol
|
||||
simp only [SMNoGrav_numberLinear, SMNoGrav_linearACCs, Fin.isValue] at hS
|
||||
exact hS 1
|
||||
|
||||
/-- The charges in `(SMNoGrav n).Sols` satisfy the cubic anomaly-equation. -/
|
||||
lemma cubeSol (S : (SMNoGrav n).Sols) : accCube S.val = 0 := by
|
||||
exact S.cubicSol
|
||||
|
||||
|
|
|
@ -25,6 +25,8 @@ open SMCharges
|
|||
open SMACCs
|
||||
open BigOperators
|
||||
|
||||
/-- For a set of 1 family SM charges satisfying all ACCs except the gravitational,
|
||||
the charge of `Q` is zero if and only if `E` is zero. -/
|
||||
lemma E_zero_iff_Q_zero {S : (SMNoGrav 1).Sols} : Q S.val (0 : Fin 1) = 0 ↔
|
||||
E S.val (0 : Fin 1) = 0 := by
|
||||
let S' := linearParameters.bijection.symm S.1.1
|
||||
|
@ -34,6 +36,8 @@ lemma E_zero_iff_Q_zero {S : (SMNoGrav 1).Sols} : Q S.val (0 : Fin 1) = 0 ↔
|
|||
rw [← hS'] at hC
|
||||
exact Iff.intro (fun hQ => S'.cubic_zero_Q'_zero hC hQ) (fun hE => S'.cubic_zero_E'_zero hC hE)
|
||||
|
||||
/-- For a set of 1-family SM charges satisfying all ACCs except the gravitational,
|
||||
if the `Q` charge is zero then the charges satisfy the gravitional ACCs. -/
|
||||
lemma accGrav_Q_zero {S : (SMNoGrav 1).Sols} (hQ : Q S.val (0 : Fin 1) = 0) :
|
||||
accGrav S.val = 0 := by
|
||||
rw [accGrav]
|
||||
|
@ -48,6 +52,8 @@ lemma accGrav_Q_zero {S : (SMNoGrav 1).Sols} (hQ : Q S.val (0 : Fin 1) = 0) :
|
|||
simp_all
|
||||
linear_combination 3 * h2
|
||||
|
||||
/-- For a set of 1-family SM charges satisfying all ACCs except the gravitational,
|
||||
if the `Q` charge is not zero then the charges satisfy the gravitional ACCs. -/
|
||||
lemma accGrav_Q_neq_zero {S : (SMNoGrav 1).Sols} (hQ : Q S.val (0 : Fin 1) ≠ 0) :
|
||||
accGrav S.val = 0 := by
|
||||
have hE := E_zero_iff_Q_zero.mpr.mt hQ
|
||||
|
@ -59,7 +65,7 @@ lemma accGrav_Q_neq_zero {S : (SMNoGrav 1).Sols} (hQ : Q S.val (0 : Fin 1) ≠ 0
|
|||
rw [← hS'] at hC ⊢
|
||||
exact S'.grav_of_cubic hC
|
||||
|
||||
/-- Any solution to the ACCs without gravity satisfies the gravitational ACC. -/
|
||||
/-- Any solution to the 1-family ACCs without gravity satisfies the gravitational ACC. -/
|
||||
theorem accGravSatisfied {S : (SMNoGrav 1).Sols} :
|
||||
accGrav S.val = 0 := by
|
||||
by_cases hQ : Q S.val (0 : Fin 1)= 0
|
||||
|
|
|
@ -7,6 +7,7 @@ import HepLean.AnomalyCancellation.SM.Basic
|
|||
import Mathlib.Tactic.Polyrith
|
||||
import Mathlib.RepresentationTheory.Basic
|
||||
/-!
|
||||
|
||||
# Permutations of SM with no RHN.
|
||||
|
||||
We define the group of permutations for the SM charges with no RHN.
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue