Merge pull request #19 from HEPLean/SM/Higgs_refactor
feat: Promote map to continuous linear
This commit is contained in:
commit
388c824463
1 changed files with 90 additions and 6 deletions
|
@ -11,6 +11,7 @@ import Mathlib.Geometry.Manifold.VectorBundle.SmoothSection
|
|||
import Mathlib.Geometry.Manifold.Instances.Real
|
||||
import Mathlib.RepresentationTheory.Basic
|
||||
import Mathlib.Analysis.InnerProductSpace.Basic
|
||||
import Mathlib.Analysis.InnerProductSpace.Adjoint
|
||||
import Mathlib.Geometry.Manifold.ContMDiff.Product
|
||||
import Mathlib.Analysis.Complex.RealDeriv
|
||||
import Mathlib.Analysis.Calculus.Deriv.Add
|
||||
|
@ -21,6 +22,10 @@ import Mathlib.Algebra.QuadraticDiscriminant
|
|||
|
||||
This file defines the basic properties for the higgs field in the standard model.
|
||||
|
||||
## References
|
||||
|
||||
- We use conventions given in: https://pdg.lbl.gov/2019/reviews/rpp2019-rev-higgs-boson.pdf
|
||||
|
||||
-/
|
||||
universe v u
|
||||
namespace StandardModel
|
||||
|
@ -64,7 +69,7 @@ lemma smooth_higgsVecToFin2ℂ : Smooth 𝓘(ℝ, higgsVec) 𝓘(ℝ, Fin 2 →
|
|||
|
||||
/-- Given an element of `gaugeGroup` the linear automorphism of `higgsVec` it gets taken to. -/
|
||||
@[simps!]
|
||||
noncomputable def higgsRepMap (g : guageGroup) : higgsVec →ₗ[ℂ] higgsVec where
|
||||
noncomputable def higgsRepMap (g : guageGroup) : higgsVec →L[ℂ] higgsVec where
|
||||
toFun S := (g.2.2 ^ 3) • (g.2.1.1 *ᵥ S)
|
||||
map_add' S T := by
|
||||
simp [Matrix.mulVec_add, smul_add]
|
||||
|
@ -73,11 +78,13 @@ noncomputable def higgsRepMap (g : guageGroup) : higgsVec →ₗ[ℂ] higgsVec w
|
|||
simp [Matrix.mulVec_smul]
|
||||
rw [Matrix.mulVec_smul]
|
||||
exact smul_comm _ _ _
|
||||
|
||||
cont := by
|
||||
exact (continuous_const_smul_iff _).mpr (Continuous.matrix_mulVec continuous_const
|
||||
(Pi.continuous_precomp fun x => x))
|
||||
|
||||
/-- The representation of the SM guage group acting on `ℂ²`. -/
|
||||
noncomputable def higgsRep : Representation ℂ guageGroup higgsVec where
|
||||
toFun := higgsRepMap
|
||||
toFun g := (higgsRepMap g).toLinearMap
|
||||
map_mul' U V := by
|
||||
apply LinearMap.ext
|
||||
intro S
|
||||
|
@ -233,7 +240,6 @@ lemma potential_eq_bound_IsMinOn_of_μSq_nonpos {μSq lambda : ℝ} (hLam : 0 <
|
|||
rw [hv]
|
||||
exact potential_bounded_below_of_μSq_nonpos hLam hμSq x
|
||||
|
||||
|
||||
lemma potential_bound_reached_of_μSq_nonneg {μSq lambda : ℝ} (hLam : 0 < lambda) (hμSq : 0 ≤ μSq) :
|
||||
∃ (φ : higgsVec), potential μSq lambda φ = - μSq ^ 2 / (4 * lambda) := by
|
||||
use ![√(μSq/(2 * lambda)), 0]
|
||||
|
@ -269,6 +275,83 @@ lemma IsMinOn_potential_iff_of_μSq_nonpos {μSq lambda : ℝ} (hLam : 0 < lambd
|
|||
rw [← potential_eq_bound_iff_of_μSq_nonpos hLam hμSq φ] at h
|
||||
exact potential_eq_bound_IsMinOn_of_μSq_nonpos hLam hμSq φ h
|
||||
|
||||
/-- Given a Higgs vector, a rotation matrix which puts the fst component of the
|
||||
vector to zero, and the snd componenet to a real -/
|
||||
def rotateMatrix (φ : higgsVec) : Matrix (Fin 2) (Fin 2) ℂ :=
|
||||
![![φ 1 /‖φ‖ , - φ 0 /‖φ‖], ![conj (φ 0) / ‖φ‖ , conj (φ 1) / ‖φ‖] ]
|
||||
|
||||
lemma rotateMatrix_star (φ : higgsVec) :
|
||||
star φ.rotateMatrix =
|
||||
![![conj (φ 1) /‖φ‖ , φ 0 /‖φ‖], ![- conj (φ 0) / ‖φ‖ , φ 1 / ‖φ‖] ] := by
|
||||
simp [star]
|
||||
rw [rotateMatrix, conjTranspose]
|
||||
ext i j
|
||||
fin_cases i <;> fin_cases j <;> simp [conj_ofReal]
|
||||
|
||||
|
||||
lemma rotateMatrix_det {φ : higgsVec} (hφ : φ ≠ 0) : (rotateMatrix φ).det = 1 := by
|
||||
simp [rotateMatrix, det_fin_two]
|
||||
have h1 : (‖φ‖ : ℂ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ)
|
||||
field_simp
|
||||
rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
|
||||
simp only [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||||
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm, add_comm]
|
||||
rfl
|
||||
|
||||
lemma rotateMatrix_unitary {φ : higgsVec} (hφ : φ ≠ 0) :
|
||||
(rotateMatrix φ) ∈ unitaryGroup (Fin 2) ℂ := by
|
||||
rw [mem_unitaryGroup_iff', rotateMatrix_star, rotateMatrix]
|
||||
erw [mul_fin_two, one_fin_two]
|
||||
have : (‖φ‖ : ℂ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ)
|
||||
congr
|
||||
field_simp
|
||||
ext i j
|
||||
fin_cases i <;> fin_cases j <;> field_simp
|
||||
· rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
|
||||
simp only [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||||
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm, add_comm]
|
||||
rfl
|
||||
· ring_nf
|
||||
· ring_nf
|
||||
· rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
|
||||
simp only [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||||
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm]
|
||||
rfl
|
||||
|
||||
lemma rotateMatrix_specialUnitary {φ : higgsVec} (hφ : φ ≠ 0) :
|
||||
(rotateMatrix φ) ∈ specialUnitaryGroup (Fin 2) ℂ :=
|
||||
mem_specialUnitaryGroup_iff.mpr ⟨rotateMatrix_unitary hφ, rotateMatrix_det hφ⟩
|
||||
|
||||
/-- Given a Higgs vector, an element of the gauge group which puts the fst component of the
|
||||
vector to zero, and the snd componenet to a real -/
|
||||
def rotateGuageGroup {φ : higgsVec} (hφ : φ ≠ 0) : guageGroup :=
|
||||
⟨1, ⟨(rotateMatrix φ), rotateMatrix_specialUnitary hφ⟩, 1⟩
|
||||
|
||||
lemma rotateGuageGroup_apply {φ : higgsVec} (hφ : φ ≠ 0) :
|
||||
higgsRep (rotateGuageGroup hφ) φ = ![0, ofReal ‖φ‖] := by
|
||||
simp [higgsRep, higgsRepMap, rotateGuageGroup, rotateMatrix, higgsRepMap]
|
||||
ext i
|
||||
fin_cases i
|
||||
simp [mulVec, vecHead, vecTail]
|
||||
ring_nf
|
||||
simp only [Fin.mk_one, Fin.isValue, cons_val_one, head_cons]
|
||||
simp [mulVec, vecHead, vecTail]
|
||||
have : (‖φ‖ : ℂ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ)
|
||||
field_simp
|
||||
rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
|
||||
simp only [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||||
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm]
|
||||
rfl
|
||||
|
||||
theorem rotate_fst_zero_snd_real (φ : higgsVec) :
|
||||
∃ (g : guageGroup), higgsRep g φ = ![0, ofReal ‖φ‖] := by
|
||||
by_cases h : φ = 0
|
||||
· use ⟨1, 1, 1⟩
|
||||
simp [h, higgsRep, higgsRepMap]
|
||||
ext i
|
||||
fin_cases i <;> rfl
|
||||
· use rotateGuageGroup h
|
||||
exact rotateGuageGroup_apply h
|
||||
|
||||
end higgsVec
|
||||
end higgsVec
|
||||
|
@ -396,12 +479,12 @@ lemma isConst_iff_of_higgsVec (Φ : higgsField) : Φ.isConst ↔ ∃ (φ : higgs
|
|||
subst hφ
|
||||
rfl
|
||||
|
||||
lemma normSq_of_higgsVec (φ : higgsVec) :φ.toField.normSq = fun x => (norm φ) ^ 2 := by
|
||||
lemma normSq_of_higgsVec (φ : higgsVec) : φ.toField.normSq = fun x => (norm φ) ^ 2 := by
|
||||
simp only [normSq, higgsVec.toField]
|
||||
funext x
|
||||
simp
|
||||
|
||||
lemma potential_of_higgsVec (φ : higgsVec) (μSq lambda : ℝ ) :
|
||||
lemma potential_of_higgsVec (φ : higgsVec) (μSq lambda : ℝ) :
|
||||
φ.toField.potential μSq lambda = fun _ => higgsVec.potential μSq lambda φ := by
|
||||
simp [higgsVec.potential]
|
||||
unfold potential
|
||||
|
@ -411,6 +494,7 @@ lemma potential_of_higgsVec (φ : higgsVec) (μSq lambda : ℝ ) :
|
|||
ring_nf
|
||||
|
||||
|
||||
|
||||
end higgsField
|
||||
end
|
||||
end StandardModel
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue