feat: add properties of graphical species

This commit is contained in:
jstoobysmith 2024-07-03 16:38:56 -04:00
parent 5b181cc7dc
commit 3890095a17
2 changed files with 156 additions and 1 deletions

View file

@ -83,4 +83,5 @@ noncomputable def graphicalSpecies (d : ) : GraphicalSpecies where
| ⟨as x⟩, ⟨𝓣⟩, ⟨𝓣⟩, _, _ => rfl
| ⟨as x⟩, ⟨as y⟩, ⟨𝓣⟩, _, _ => rfl
end LorentzTensor

View file

@ -5,6 +5,12 @@ Authors: Joseph Tooby-Smith
-/
import Mathlib.CategoryTheory.FintypeCat
import Mathlib.Tactic.FinCases
import Mathlib.Data.PFun
import Mathlib.Data.Fintype.Sum
import Mathlib.CategoryTheory.Limits.FintypeCat
import Mathlib.CategoryTheory.Core
import Mathlib.CategoryTheory.Limits.Shapes.Types
import LeanCopilot
/-!
# Graphical species
@ -113,7 +119,155 @@ instance : Category elGr where
| as d, as c, as b, as a, f, g, h =>
simp only [Hom.comp, Iso.trans_assoc]
def ch {X : FintypeCat} (x : X) : Hom 𝓣 (as X) := (x, 0)
def τ : Hom 𝓣 𝓣 := 1
@[simp]
lemma τ_comp_self : τ ≫ τ = 𝟙 𝓣 := rfl
def coreFintypeIncl : Core FintypeCat ⥤ elGr where
obj X := as X
map f := f
noncomputable def fintypeCoprod (X Y : FintypeCat) : elGr := as (X ⨿ Y)
noncomputable def fintypeCoprodTerm (X : FintypeCat) : elGr := fintypeCoprod X (_ FintypeCat)
example : CategoryTheory.Functor.ReflectsIsomorphisms FintypeCat.incl := by
exact reflectsIsomorphisms_of_full_and_faithful FintypeCat.incl
def terminalLimitCone : Limits.LimitCone (Functor.empty (FintypeCat)) where
cone :=
{ pt := FintypeCat.of PUnit
π := (Functor.uniqueFromEmpty _).hom}
isLimit := {
lift := fun _ _ => PUnit.unit
fac := fun _ => by rintro ⟨⟨⟩⟩
uniq := fun _ _ _ => by
funext
rfl}
noncomputable def isoToTerm : (_ FintypeCat) ≅ FintypeCat.of PUnit :=
CategoryTheory.Limits.limit.isoLimitCone terminalLimitCone
noncomputable def objTerm : (_ FintypeCat) := isoToTerm.inv PUnit.unit
noncomputable def starObj (X : FintypeCat) : (X ⨿ (_ FintypeCat) : FintypeCat) :=
(@Limits.coprod.inr _ _ X (_ FintypeCat) _) objTerm
/- TODO: derive this from `CategoryTheory.Limits.coprod.functor`. -/
noncomputable def coprodCore : Core FintypeCat × Core FintypeCat ⥤ Core FintypeCat where
obj := fun (X, Y) => (X ⨿ Y : FintypeCat)
map f := CategoryTheory.Limits.coprod.mapIso f.1 f.2
map_id := by
intro X
simp [Limits.coprod.mapIso]
trans
· rfl
· aesop_cat
map_comp := by
intro X Y Z f g
simp_all only [prod_Hom, prod_comp]
obtain ⟨fst, snd⟩ := X
obtain ⟨fst_1, snd_1⟩ := Y
obtain ⟨fst_2, snd_2⟩ := Z
simp_all only
dsimp [Limits.coprod.mapIso]
congr
· simp_all only [Limits.coprod.map_map]
· simp_all only [Limits.coprod.map_map]
apply Eq.refl
end elGr
open elGr
/-- The category of graphical species. -/
abbrev GraphicalSpecies := elGrᵒᵖ ⥤ Type
abbrev GraphicalSpecies := elGrᵒᵖ ⥤ Type
namespace GraphicalSpecies
variable (S : GraphicalSpecies)
abbrev colors := S.obj ⟨𝓣⟩
def MatchColours (X Y : FintypeCat) : Type :=
Subtype fun (R : S.obj ⟨as (X ⨿ (_ FintypeCat))⟩ × S.obj ⟨as (Y ⨿ (_ FintypeCat))⟩) ↦
S.map (Quiver.Hom.op $ ch (elGr.starObj X)) R.1 =
S.map (Quiver.Hom.op $ τ ≫ ch (elGr.starObj Y)) R.2
/-- Given two finite types `X` and `Y`, the objects
of `S.obj ⟨elGr.as X⟩ × S.obj ⟨elGr.as Y⟩` which on `x ∈ X` and `y ∈ Y` map to dual colors. -/
def MatchColor {X Y : FintypeCat} (x : X) (y : Y) : Type :=
Subtype fun (R : S.obj ⟨elGr.as X⟩ × S.obj ⟨elGr.as Y⟩) ↦
S.map (Quiver.Hom.op (ch x)) R.1 = S.map (Quiver.Hom.op (τ ≫ ch y)) R.2
/-- An element of `S.MatchColor y x ` given an element of `S.MatchColor x y`. -/
def matchColorSwap {X Y : FintypeCat} {x : X} {y : Y} (R : S.MatchColor x y) : S.MatchColor y x :=
⟨(R.val.2, R.val.1), by
have hS := congrArg (S.map (Quiver.Hom.op τ)) R.2
rw [← FunctorToTypes.map_comp_apply, ← FunctorToTypes.map_comp_apply] at hS
rw [← op_comp, ← op_comp, ← Category.assoc] at hS
simpa using hS.symm⟩
def matchColorCongrLeft {X Y Z : FintypeCat} (f : X ≅ Z) {x : X} {y : Y} (R : S.MatchColor (f.hom x) y) :
S.MatchColor x y :=
⟨(S.map (Quiver.Hom.op $ Hom.as f) R.val.1, R.val.2), by
rw [← R.2, ← FunctorToTypes.map_comp_apply, ← op_comp]
rfl⟩
def matchColorCongrRight {X Y Z : FintypeCat} (f : Y ≅ Z) {x : X} {y : Y} (R : S.MatchColor x (f.hom y)) :
S.MatchColor x y :=
⟨(R.val.1, S.map (Quiver.Hom.op $ Hom.as f) R.val.2), by
rw [R.2, ← FunctorToTypes.map_comp_apply, ← op_comp]
rfl⟩
def matchColorCongr {X Y Z W : FintypeCat} (f : X ≅ W) (g : Y ≅ Z) {x : X} {y : Y}
(R : S.MatchColor (f.hom x) (g.hom y)) : S.MatchColor x y :=
S.matchColorCongrLeft f (S.matchColorCongrRight g R)
def matchColorIndexCongrLeft {X Y : FintypeCat} {x x' : X} {y : Y} (h : x = x') (R : S.MatchColor x y) :
S.MatchColor x' y :=
⟨(R.val.1, R.val.2), by
subst h
exact R.2⟩
def MatchColorFin (X Y : FintypeCat) : Type :=
@MatchColor S (FintypeCat.of $ X ⊕ Fin 1) (FintypeCat.of $ Y ⊕ Fin 1) (Sum.inr 0) (Sum.inr 0)
def matchColorFinCongrLeft {X Y Z : FintypeCat} (f : X ≅ W) (R : S.MatchColorFin X Y) :
S.MatchColorFin W Z := by
let f' : FintypeCat.of (X ⊕ Fin 1) ≅ FintypeCat.of (W ⊕ Fin 1) :=
FintypeCat.equivEquivIso $ Equiv.sumCongr (FintypeCat.equivEquivIso.symm f)
(FintypeCat.equivEquivIso.symm (Iso.refl (Fin 1)))
let x := @matchColorCongrLeft S _ (FintypeCat.of (Y ⊕ Fin 1)) _ f' (Sum.inr 0) (Sum.inr 0) R
end GraphicalSpecies
structure MulGraphicalSpecies where
toGraphicalSpecies : GraphicalSpecies
mul : ∀ {X Y : FintypeCat},
toGraphicalSpecies.MatchColorFin X Y → toGraphicalSpecies.obj
⟨elGr.as (FintypeCat.of (X ⊕ Y))⟩
comm : ∀ {X Y : FintypeCat} {x : X} {y : Y} (R : toGraphicalSpecies.MatchColorFin X Y),
mul R = toGraphicalSpecies.map (fintypeCoprodSwap X Y).op
(mul (toGraphicalSpecies.matchColorSwap R))
equivariance : ∀ {X Y Z W : FintypeCat} (f : X ≃ W) (g : Y ≃ Z) {x : X} {y : Y}
(R : toGraphicalSpecies.MatchColor (f x) (g y)),
toGraphicalSpecies.map (fintypeCoprodMap f g).op (mul R) =
mul (toGraphicalSpecies.matchColorCongr f g R)
namespace MulGraphicalSpecies
variable (S : MulGraphicalSpecies)
def obj := S.toGraphicalSpecies.obj
def map {X Y : elGrᵒᵖ} (f : X ⟶ Y) : S.obj X ⟶ S.obj Y := S.toGraphicalSpecies.map f
end MulGraphicalSpecies