feat: Add informal def for SM gauge group.
This commit is contained in:
parent
62f1153088
commit
3aa00ff1e7
3 changed files with 82 additions and 17 deletions
|
@ -6,6 +6,7 @@ Authors: Joseph Tooby-Smith
|
|||
import Mathlib.Data.Complex.Exponential
|
||||
import Mathlib.Geometry.Manifold.Instances.Real
|
||||
import Mathlib.LinearAlgebra.Matrix.ToLin
|
||||
import HepLean.Meta.Informal
|
||||
/-!
|
||||
# The Standard Model
|
||||
|
||||
|
@ -21,8 +22,65 @@ open Matrix
|
|||
open Complex
|
||||
open ComplexConjugate
|
||||
|
||||
/-- The global gauge group of the standard model. -/
|
||||
abbrev GaugeGroup : Type :=
|
||||
/-- The global gauge group of the Standard Model with no discrete quotients.
|
||||
The `I` in the Name is an indication of the statement that this has no discrete quotients. -/
|
||||
abbrev GaugeGroupI : Type :=
|
||||
specialUnitaryGroup (Fin 3) ℂ × specialUnitaryGroup (Fin 2) ℂ × unitary ℂ
|
||||
|
||||
informal_definition gaugeGroupℤ₆SubGroup where
|
||||
physics :≈ "The subgroup of the un-quotiented gauge group which acts trivially on
|
||||
all particles in the standard model. "
|
||||
math :≈ "The ℤ₆-subgroup of ``GaugeGroupI with elements (α^2 * I₃, α^(-3) * I₂, α), where `α`
|
||||
is a sixth complex root of unity."
|
||||
ref :≈ "https://math.ucr.edu/home/baez/guts.pdf"
|
||||
deps :≈ [``GaugeGroupI]
|
||||
|
||||
informal_definition GaugeGroupℤ₆ where
|
||||
physics :≈ "The smallest possible gauge group of the Standard Model."
|
||||
math :≈ "The quotient of ``GaugeGroupI by the ℤ₆-subgroup `gaugeGroupℤ₆SubGroup`."
|
||||
ref :≈ "https://math.ucr.edu/home/baez/guts.pdf"
|
||||
deps :≈ [``GaugeGroupI, ``StandardModel.gaugeGroupℤ₆SubGroup]
|
||||
|
||||
informal_definition gaugeGroupℤ₂SubGroup where
|
||||
physics :≈ "The ℤ₂subgroup of the un-quotiented gauge group which acts trivially on
|
||||
all particles in the standard model. "
|
||||
math :≈ "The ℤ₂-subgroup of ``GaugeGroupI derived from the ℤ₂ subgroup of `gaugeGroupℤ₆SubGroup`."
|
||||
ref :≈ "https://math.ucr.edu/home/baez/guts.pdf"
|
||||
deps :≈ [``GaugeGroupI, ``StandardModel.gaugeGroupℤ₆SubGroup]
|
||||
|
||||
informal_definition GaugeGroupℤ₂ where
|
||||
physics :≈ "The guage group of the Standard Model with a ℤ₂ quotient."
|
||||
math :≈ "The quotient of ``GaugeGroupI by the ℤ₂-subgroup `gaugeGroupℤ₂SubGroup`."
|
||||
ref :≈ "https://math.ucr.edu/home/baez/guts.pdf"
|
||||
deps :≈ [``GaugeGroupI, ``StandardModel.gaugeGroupℤ₂SubGroup]
|
||||
|
||||
informal_definition gaugeGroupℤ₃SubGroup where
|
||||
physics :≈ "The ℤ₃-subgroup of the un-quotiented gauge group which acts trivially on
|
||||
all particles in the standard model. "
|
||||
math :≈ "The ℤ₃-subgroup of ``GaugeGroupI derived from the ℤ₃ subgroup of `gaugeGroupℤ₆SubGroup`."
|
||||
ref :≈ "https://math.ucr.edu/home/baez/guts.pdf"
|
||||
deps :≈ [``GaugeGroupI, ``StandardModel.gaugeGroupℤ₆SubGroup]
|
||||
|
||||
informal_definition GaugeGroupℤ₃ where
|
||||
physics :≈ "The guage group of the Standard Model with a ℤ₃-quotient."
|
||||
math :≈ "The quotient of ``GaugeGroupI by the ℤ₃-subgroup `gaugeGroupℤ₃SubGroup`."
|
||||
ref :≈ "https://math.ucr.edu/home/baez/guts.pdf"
|
||||
deps :≈ [``GaugeGroupI, ``StandardModel.gaugeGroupℤ₃SubGroup]
|
||||
|
||||
/-- Specifies the allowed quotients of `SU(3) x SU(2) x U(1)` which give a valid
|
||||
gauge group of the Standard Model. -/
|
||||
inductive GaugeGroupQuot : Type
|
||||
| ℤ₆ : GaugeGroupQuot
|
||||
| ℤ₂ : GaugeGroupQuot
|
||||
| ℤ₃ : GaugeGroupQuot
|
||||
| I : GaugeGroupQuot
|
||||
|
||||
informal_definition GaugeGroup where
|
||||
physics :≈ "The (global) gauge group of the Standard Model given a choice of quotient."
|
||||
math :≈ "The map from `GaugeGroupQuot` to `Type` which gives the gauge group of the Standard Model
|
||||
for a given choice of quotient."
|
||||
ref :≈ "https://math.ucr.edu/home/baez/guts.pdf"
|
||||
deps :≈ [``GaugeGroupI, ``gaugeGroupℤ₆SubGroup, ``gaugeGroupℤ₂SubGroup, ``gaugeGroupℤ₃SubGroup,
|
||||
``GaugeGroupQuot]
|
||||
|
||||
end StandardModel
|
||||
|
|
|
@ -32,7 +32,7 @@ open ComplexConjugate
|
|||
|
||||
/-- The Higgs representation as a homomorphism from the gauge group to unitary `2×2`-matrices. -/
|
||||
@[simps!]
|
||||
noncomputable def higgsRepUnitary : GaugeGroup →* unitaryGroup (Fin 2) ℂ where
|
||||
noncomputable def higgsRepUnitary : GaugeGroupI →* unitaryGroup (Fin 2) ℂ where
|
||||
toFun g := repU1 g.2.2 * fundamentalSU2 g.2.1
|
||||
map_mul' := by
|
||||
intro ⟨_, a2, a3⟩ ⟨_, b2, b3⟩
|
||||
|
@ -75,14 +75,14 @@ def unitToLinear : unitary (HiggsVec →L[ℂ] HiggsVec) →* HiggsVec →ₗ[
|
|||
|
||||
/-- The representation of the gauge group acting on `higgsVec`. -/
|
||||
@[simps!]
|
||||
def rep : Representation ℂ GaugeGroup HiggsVec :=
|
||||
def rep : Representation ℂ GaugeGroupI HiggsVec :=
|
||||
unitToLinear.comp (unitaryToLin.comp higgsRepUnitary)
|
||||
|
||||
lemma higgsRepUnitary_mul (g : GaugeGroup) (φ : HiggsVec) :
|
||||
lemma higgsRepUnitary_mul (g : GaugeGroupI) (φ : HiggsVec) :
|
||||
(higgsRepUnitary g).1 *ᵥ φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) := by
|
||||
simp [higgsRepUnitary_apply_coe, smul_mulVec_assoc]
|
||||
|
||||
lemma rep_apply (g : GaugeGroup) (φ : HiggsVec) : rep g φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) :=
|
||||
lemma rep_apply (g : GaugeGroupI) (φ : HiggsVec) : rep g φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) :=
|
||||
higgsRepUnitary_mul g φ
|
||||
|
||||
/-!
|
||||
|
@ -131,7 +131,7 @@ lemma rotateMatrix_specialUnitary {φ : HiggsVec} (hφ : φ ≠ 0) :
|
|||
|
||||
/-- Given a Higgs vector, an element of the gauge group which puts the first component of the
|
||||
vector to zero, and the second component to a real number. -/
|
||||
def rotateGuageGroup {φ : HiggsVec} (hφ : φ ≠ 0) : GaugeGroup :=
|
||||
def rotateGuageGroup {φ : HiggsVec} (hφ : φ ≠ 0) : GaugeGroupI :=
|
||||
⟨1, ⟨(rotateMatrix φ), rotateMatrix_specialUnitary hφ⟩, 1⟩
|
||||
|
||||
lemma rotateGuageGroup_apply {φ : HiggsVec} (hφ : φ ≠ 0) :
|
||||
|
@ -155,7 +155,7 @@ lemma rotateGuageGroup_apply {φ : HiggsVec} (hφ : φ ≠ 0) :
|
|||
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm]
|
||||
|
||||
theorem rotate_fst_zero_snd_real (φ : HiggsVec) :
|
||||
∃ (g : GaugeGroup), rep g φ = ![0, Complex.ofReal ‖φ‖] := by
|
||||
∃ (g : GaugeGroupI), rep g φ = ![0, Complex.ofReal ‖φ‖] := by
|
||||
by_cases h : φ = 0
|
||||
· use ⟨1, 1, 1⟩
|
||||
simp only [Prod.mk_one_one, _root_.map_one, h, map_zero, Nat.succ_eq_add_one, Nat.reduceAdd,
|
||||
|
@ -166,9 +166,9 @@ theorem rotate_fst_zero_snd_real (φ : HiggsVec) :
|
|||
exact rotateGuageGroup_apply h
|
||||
|
||||
theorem rotate_fst_real_snd_zero (φ : HiggsVec) :
|
||||
∃ (g : GaugeGroup), rep g φ = ![Complex.ofReal ‖φ‖, 0] := by
|
||||
∃ (g : GaugeGroupI), rep g φ = ![Complex.ofReal ‖φ‖, 0] := by
|
||||
obtain ⟨g, h⟩ := rotate_fst_zero_snd_real φ
|
||||
let P : GaugeGroup := ⟨1, ⟨!![0, 1; -1, 0], by
|
||||
let P : GaugeGroupI := ⟨1, ⟨!![0, 1; -1, 0], by
|
||||
rw [mem_specialUnitaryGroup_iff]
|
||||
apply And.intro
|
||||
· rw [mem_unitaryGroup_iff, star_eq_conjTranspose]
|
||||
|
@ -190,13 +190,20 @@ theorem rotate_fst_real_snd_zero (φ : HiggsVec) :
|
|||
· simp only [Fin.mk_one, Fin.isValue, Pi.smul_apply, Function.comp_apply, cons_val_one, head_cons,
|
||||
tail_cons, smul_zero]
|
||||
|
||||
informal_lemma stablity_group where
|
||||
informal_lemma stability_group_single where
|
||||
physics :≈ "The Higgs boson breaks electroweak symmetry down to the electromagnetic force."
|
||||
math :≈ "The stablity group of the action of `rep` on `![0, Complex.ofReal ‖φ‖]`,
|
||||
for non-zero `‖φ‖` is the `SU(3) x U(1)` subgroup of
|
||||
`gaugeGroup := SU(3) x SU(2) x U(1)` with the embedding given by
|
||||
`(g, e^{i θ}) ↦ (g, diag (e ^ {3 * i θ}, e ^ {- 3 * i θ}), e^{i θ})`."
|
||||
deps :≈ [`StandardModel.HiggsVec, `StandardModel.HiggsVec.rep]
|
||||
deps :≈ [``StandardModel.HiggsVec, ``StandardModel.HiggsVec.rep]
|
||||
|
||||
informal_lemma stability_group where
|
||||
math :≈ "The subgroup of `gaugeGroup := SU(3) x SU(2) x U(1)` which preserves every `HiggsVec`
|
||||
by the action of ``StandardModel.HiggsVec.rep is given by `SU(3) x ℤ₆` where ℤ₆
|
||||
is the subgroup of `SU(2) x U(1)` with elements `(α^(-3) * I₂, α)` where
|
||||
α is a sixth root of unity."
|
||||
deps :≈ [``StandardModel.HiggsVec, ``StandardModel.HiggsVec.rep]
|
||||
|
||||
end HiggsVec
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue