feat: Add informal def for SM gauge group.
This commit is contained in:
parent
62f1153088
commit
3aa00ff1e7
3 changed files with 82 additions and 17 deletions
|
@ -6,6 +6,7 @@ Authors: Joseph Tooby-Smith
|
|||
import Mathlib.Data.Complex.Exponential
|
||||
import Mathlib.Geometry.Manifold.Instances.Real
|
||||
import Mathlib.LinearAlgebra.Matrix.ToLin
|
||||
import HepLean.Meta.Informal
|
||||
/-!
|
||||
# The Standard Model
|
||||
|
||||
|
@ -21,8 +22,65 @@ open Matrix
|
|||
open Complex
|
||||
open ComplexConjugate
|
||||
|
||||
/-- The global gauge group of the standard model. -/
|
||||
abbrev GaugeGroup : Type :=
|
||||
/-- The global gauge group of the Standard Model with no discrete quotients.
|
||||
The `I` in the Name is an indication of the statement that this has no discrete quotients. -/
|
||||
abbrev GaugeGroupI : Type :=
|
||||
specialUnitaryGroup (Fin 3) ℂ × specialUnitaryGroup (Fin 2) ℂ × unitary ℂ
|
||||
|
||||
informal_definition gaugeGroupℤ₆SubGroup where
|
||||
physics :≈ "The subgroup of the un-quotiented gauge group which acts trivially on
|
||||
all particles in the standard model. "
|
||||
math :≈ "The ℤ₆-subgroup of ``GaugeGroupI with elements (α^2 * I₃, α^(-3) * I₂, α), where `α`
|
||||
is a sixth complex root of unity."
|
||||
ref :≈ "https://math.ucr.edu/home/baez/guts.pdf"
|
||||
deps :≈ [``GaugeGroupI]
|
||||
|
||||
informal_definition GaugeGroupℤ₆ where
|
||||
physics :≈ "The smallest possible gauge group of the Standard Model."
|
||||
math :≈ "The quotient of ``GaugeGroupI by the ℤ₆-subgroup `gaugeGroupℤ₆SubGroup`."
|
||||
ref :≈ "https://math.ucr.edu/home/baez/guts.pdf"
|
||||
deps :≈ [``GaugeGroupI, ``StandardModel.gaugeGroupℤ₆SubGroup]
|
||||
|
||||
informal_definition gaugeGroupℤ₂SubGroup where
|
||||
physics :≈ "The ℤ₂subgroup of the un-quotiented gauge group which acts trivially on
|
||||
all particles in the standard model. "
|
||||
math :≈ "The ℤ₂-subgroup of ``GaugeGroupI derived from the ℤ₂ subgroup of `gaugeGroupℤ₆SubGroup`."
|
||||
ref :≈ "https://math.ucr.edu/home/baez/guts.pdf"
|
||||
deps :≈ [``GaugeGroupI, ``StandardModel.gaugeGroupℤ₆SubGroup]
|
||||
|
||||
informal_definition GaugeGroupℤ₂ where
|
||||
physics :≈ "The guage group of the Standard Model with a ℤ₂ quotient."
|
||||
math :≈ "The quotient of ``GaugeGroupI by the ℤ₂-subgroup `gaugeGroupℤ₂SubGroup`."
|
||||
ref :≈ "https://math.ucr.edu/home/baez/guts.pdf"
|
||||
deps :≈ [``GaugeGroupI, ``StandardModel.gaugeGroupℤ₂SubGroup]
|
||||
|
||||
informal_definition gaugeGroupℤ₃SubGroup where
|
||||
physics :≈ "The ℤ₃-subgroup of the un-quotiented gauge group which acts trivially on
|
||||
all particles in the standard model. "
|
||||
math :≈ "The ℤ₃-subgroup of ``GaugeGroupI derived from the ℤ₃ subgroup of `gaugeGroupℤ₆SubGroup`."
|
||||
ref :≈ "https://math.ucr.edu/home/baez/guts.pdf"
|
||||
deps :≈ [``GaugeGroupI, ``StandardModel.gaugeGroupℤ₆SubGroup]
|
||||
|
||||
informal_definition GaugeGroupℤ₃ where
|
||||
physics :≈ "The guage group of the Standard Model with a ℤ₃-quotient."
|
||||
math :≈ "The quotient of ``GaugeGroupI by the ℤ₃-subgroup `gaugeGroupℤ₃SubGroup`."
|
||||
ref :≈ "https://math.ucr.edu/home/baez/guts.pdf"
|
||||
deps :≈ [``GaugeGroupI, ``StandardModel.gaugeGroupℤ₃SubGroup]
|
||||
|
||||
/-- Specifies the allowed quotients of `SU(3) x SU(2) x U(1)` which give a valid
|
||||
gauge group of the Standard Model. -/
|
||||
inductive GaugeGroupQuot : Type
|
||||
| ℤ₆ : GaugeGroupQuot
|
||||
| ℤ₂ : GaugeGroupQuot
|
||||
| ℤ₃ : GaugeGroupQuot
|
||||
| I : GaugeGroupQuot
|
||||
|
||||
informal_definition GaugeGroup where
|
||||
physics :≈ "The (global) gauge group of the Standard Model given a choice of quotient."
|
||||
math :≈ "The map from `GaugeGroupQuot` to `Type` which gives the gauge group of the Standard Model
|
||||
for a given choice of quotient."
|
||||
ref :≈ "https://math.ucr.edu/home/baez/guts.pdf"
|
||||
deps :≈ [``GaugeGroupI, ``gaugeGroupℤ₆SubGroup, ``gaugeGroupℤ₂SubGroup, ``gaugeGroupℤ₃SubGroup,
|
||||
``GaugeGroupQuot]
|
||||
|
||||
end StandardModel
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue