feat: Add informal def for SM gauge group.

This commit is contained in:
jstoobysmith 2024-09-18 07:37:33 -04:00
parent 62f1153088
commit 3aa00ff1e7
3 changed files with 82 additions and 17 deletions

View file

@ -32,7 +32,7 @@ open ComplexConjugate
/-- The Higgs representation as a homomorphism from the gauge group to unitary `2×2`-matrices. -/
@[simps!]
noncomputable def higgsRepUnitary : GaugeGroup →* unitaryGroup (Fin 2) where
noncomputable def higgsRepUnitary : GaugeGroupI →* unitaryGroup (Fin 2) where
toFun g := repU1 g.2.2 * fundamentalSU2 g.2.1
map_mul' := by
intro ⟨_, a2, a3⟩ ⟨_, b2, b3⟩
@ -75,14 +75,14 @@ def unitToLinear : unitary (HiggsVec →L[] HiggsVec) →* HiggsVec →ₗ[
/-- The representation of the gauge group acting on `higgsVec`. -/
@[simps!]
def rep : Representation GaugeGroup HiggsVec :=
def rep : Representation GaugeGroupI HiggsVec :=
unitToLinear.comp (unitaryToLin.comp higgsRepUnitary)
lemma higgsRepUnitary_mul (g : GaugeGroup) (φ : HiggsVec) :
lemma higgsRepUnitary_mul (g : GaugeGroupI) (φ : HiggsVec) :
(higgsRepUnitary g).1 *ᵥ φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) := by
simp [higgsRepUnitary_apply_coe, smul_mulVec_assoc]
lemma rep_apply (g : GaugeGroup) (φ : HiggsVec) : rep g φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) :=
lemma rep_apply (g : GaugeGroupI) (φ : HiggsVec) : rep g φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) :=
higgsRepUnitary_mul g φ
/-!
@ -131,7 +131,7 @@ lemma rotateMatrix_specialUnitary {φ : HiggsVec} (hφ : φ ≠ 0) :
/-- Given a Higgs vector, an element of the gauge group which puts the first component of the
vector to zero, and the second component to a real number. -/
def rotateGuageGroup {φ : HiggsVec} (hφ : φ ≠ 0) : GaugeGroup :=
def rotateGuageGroup {φ : HiggsVec} (hφ : φ ≠ 0) : GaugeGroupI :=
⟨1, ⟨(rotateMatrix φ), rotateMatrix_specialUnitary hφ⟩, 1⟩
lemma rotateGuageGroup_apply {φ : HiggsVec} (hφ : φ ≠ 0) :
@ -155,7 +155,7 @@ lemma rotateGuageGroup_apply {φ : HiggsVec} (hφ : φ ≠ 0) :
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm]
theorem rotate_fst_zero_snd_real (φ : HiggsVec) :
∃ (g : GaugeGroup), rep g φ = ![0, Complex.ofReal ‖φ‖] := by
∃ (g : GaugeGroupI), rep g φ = ![0, Complex.ofReal ‖φ‖] := by
by_cases h : φ = 0
· use ⟨1, 1, 1⟩
simp only [Prod.mk_one_one, _root_.map_one, h, map_zero, Nat.succ_eq_add_one, Nat.reduceAdd,
@ -166,9 +166,9 @@ theorem rotate_fst_zero_snd_real (φ : HiggsVec) :
exact rotateGuageGroup_apply h
theorem rotate_fst_real_snd_zero (φ : HiggsVec) :
∃ (g : GaugeGroup), rep g φ = ![Complex.ofReal ‖φ‖, 0] := by
∃ (g : GaugeGroupI), rep g φ = ![Complex.ofReal ‖φ‖, 0] := by
obtain ⟨g, h⟩ := rotate_fst_zero_snd_real φ
let P : GaugeGroup := ⟨1, ⟨!![0, 1; -1, 0], by
let P : GaugeGroupI := ⟨1, ⟨!![0, 1; -1, 0], by
rw [mem_specialUnitaryGroup_iff]
apply And.intro
· rw [mem_unitaryGroup_iff, star_eq_conjTranspose]
@ -190,13 +190,20 @@ theorem rotate_fst_real_snd_zero (φ : HiggsVec) :
· simp only [Fin.mk_one, Fin.isValue, Pi.smul_apply, Function.comp_apply, cons_val_one, head_cons,
tail_cons, smul_zero]
informal_lemma stablity_group where
informal_lemma stability_group_single where
physics :≈ "The Higgs boson breaks electroweak symmetry down to the electromagnetic force."
math :≈ "The stablity group of the action of `rep` on `![0, Complex.ofReal ‖φ‖]`,
for non-zero `‖φ‖` is the `SU(3) x U(1)` subgroup of
`gaugeGroup := SU(3) x SU(2) x U(1)` with the embedding given by
`(g, e^{i θ}) ↦ (g, diag (e ^ {3 * i θ}, e ^ {- 3 * i θ}), e^{i θ})`."
deps :≈ [`StandardModel.HiggsVec, `StandardModel.HiggsVec.rep]
deps :≈ [``StandardModel.HiggsVec, ``StandardModel.HiggsVec.rep]
informal_lemma stability_group where
math :≈ "The subgroup of `gaugeGroup := SU(3) x SU(2) x U(1)` which preserves every `HiggsVec`
by the action of ``StandardModel.HiggsVec.rep is given by `SU(3) x ℤ₆` where ℤ₆
is the subgroup of `SU(2) x U(1)` with elements `(α^(-3) * I₂, α)` where
α is a sixth root of unity."
deps :≈ [``StandardModel.HiggsVec, ``StandardModel.HiggsVec.rep]
end HiggsVec