feat: Add FieldOpAlgebra

This commit is contained in:
jstoobysmith 2025-01-27 06:20:25 +00:00
parent 7738be4443
commit 3abc31af98
4 changed files with 362 additions and 1 deletions

View file

@ -0,0 +1,239 @@
/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.Algebras.FieldOpAlgebra.Basic
/-!
# Normal Ordering on Field operator algebra
-/
namespace FieldSpecification
open CrAnAlgebra
open StateAlgebra
open ProtoOperatorAlgebra
open HepLean.List
open WickContraction
open FieldStatistic
namespace FieldOpAlgebra
variable {𝓕 : FieldSpecification}
/-!
## Normal order on super-commutators.
The main result of this is
`ι_normalOrder_superCommute_eq_zero_mul`
which states that applying `ι` to the normal order of something containing a super-commutator
is zero.
-/
lemma ι_normalOrder_superCommute_ofCrAnList_ofCrAnList_eq_zero
(φa φa' : 𝓕.CrAnStates) (φs φs' : List 𝓕.CrAnStates) :
ι 𝓝(ofCrAnList φs * [ofCrAnState φa, ofCrAnState φa']ₛca * ofCrAnList φs') = 0 := by
rcases CreateAnnihilate.eq_create_or_annihilate (𝓕 |>ᶜ φa) with hφa | hφa
<;> rcases CreateAnnihilate.eq_create_or_annihilate (𝓕 |>ᶜ φa') with hφa' | hφa'
· rw [normalOrder_superCommute_ofCrAnList_create_create_ofCrAnList φa φa' hφa hφa' φs φs']
rw [map_smul, map_mul, map_mul, map_mul, ι_superCommute_of_create_create φa φa' hφa hφa']
simp
· rw [normalOrder_superCommute_create_annihilate φa φa' hφa hφa' (ofCrAnList φs)
(ofCrAnList φs')]
simp
· rw [normalOrder_superCommute_annihilate_create φa' φa hφa' hφa (ofCrAnList φs)
(ofCrAnList φs')]
simp
· rw [normalOrder_superCommute_ofCrAnList_annihilate_annihilate_ofCrAnList φa φa' hφa hφa' φs φs']
rw [map_smul, map_mul, map_mul, map_mul,
ι_superCommute_of_annihilate_annihilate φa φa' hφa hφa']
simp
lemma ι_normalOrder_superCommute_ofCrAnList_eq_zero
(φa φa' : 𝓕.CrAnStates) (φs : List 𝓕.CrAnStates)
(a : 𝓕.CrAnAlgebra) : ι 𝓝(ofCrAnList φs * [ofCrAnState φa, ofCrAnState φa']ₛca * a) = 0 := by
have hf : ι.toLinearMap ∘ₗ normalOrder ∘ₗ
mulLinearMap (ofCrAnList φs * [ofCrAnState φa, ofCrAnState φa']ₛca) = 0 := by
apply ofCrAnListBasis.ext
intro l
simp only [CrAnAlgebra.ofListBasis_eq_ofList, LinearMap.coe_comp, Function.comp_apply,
AlgHom.toLinearMap_apply, LinearMap.zero_apply]
exact ι_normalOrder_superCommute_ofCrAnList_ofCrAnList_eq_zero φa φa' φs l
change (ι.toLinearMap ∘ₗ normalOrder ∘ₗ
mulLinearMap ((ofCrAnList φs * [ofCrAnState φa, ofCrAnState φa']ₛca))) a = 0
rw [hf]
simp
lemma ι_normalOrder_superCommute_ofCrAnState_eq_zero_mul (φa φa' : 𝓕.CrAnStates)
(a b : 𝓕.CrAnAlgebra) :
ι 𝓝(a * [ofCrAnState φa, ofCrAnState φa']ₛca * b) = 0 := by
rw [mul_assoc]
change (ι.toLinearMap ∘ₗ normalOrder ∘ₗ mulLinearMap.flip
([ofCrAnState φa, ofCrAnState φa']ₛca * b)) a = 0
have hf : ι.toLinearMap ∘ₗ normalOrder ∘ₗ mulLinearMap.flip
([ofCrAnState φa, ofCrAnState φa']ₛca * b) = 0 := by
apply ofCrAnListBasis.ext
intro l
simp only [mulLinearMap, CrAnAlgebra.ofListBasis_eq_ofList, LinearMap.coe_comp,
Function.comp_apply, LinearMap.flip_apply, LinearMap.coe_mk, AddHom.coe_mk,
AlgHom.toLinearMap_apply, LinearMap.zero_apply]
rw [← mul_assoc]
exact ι_normalOrder_superCommute_ofCrAnList_eq_zero φa φa' _ _
rw [hf]
simp
lemma ι_normalOrder_superCommute_ofCrAnState_ofCrAnList_eq_zero_mul (φa : 𝓕.CrAnStates)
(φs : List 𝓕.CrAnStates)
(a b : 𝓕.CrAnAlgebra) :
ι 𝓝(a * [ofCrAnState φa, ofCrAnList φs]ₛca * b) = 0 := by
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList_eq_sum]
rw [Finset.mul_sum, Finset.sum_mul]
rw [map_sum, map_sum]
apply Fintype.sum_eq_zero
intro n
rw [← mul_assoc, ← mul_assoc]
rw [mul_assoc _ _ b, ofCrAnList_singleton]
rw [ι_normalOrder_superCommute_ofCrAnState_eq_zero_mul]
lemma ι_normalOrder_superCommute_ofCrAnList_ofCrAnState_eq_zero_mul (φa : 𝓕.CrAnStates)
(φs : List 𝓕.CrAnStates) (a b : 𝓕.CrAnAlgebra) :
ι 𝓝(a * [ofCrAnList φs, ofCrAnState φa]ₛca * b) = 0 := by
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList_symm, ofCrAnList_singleton]
simp only [FieldStatistic.instCommGroup.eq_1, FieldStatistic.ofList_singleton, mul_neg,
Algebra.mul_smul_comm, neg_mul, Algebra.smul_mul_assoc, map_neg, map_smul]
rw [ι_normalOrder_superCommute_ofCrAnState_ofCrAnList_eq_zero_mul]
simp
lemma ι_normalOrder_superCommute_ofCrAnList_ofCrAnList_eq_zero_mul
(φs φs' : List 𝓕.CrAnStates) (a b : 𝓕.CrAnAlgebra) :
ι 𝓝(a * [ofCrAnList φs, ofCrAnList φs']ₛca * b) = 0 := by
rw [superCommute_ofCrAnList_ofCrAnList_eq_sum, Finset.mul_sum, Finset.sum_mul]
rw [map_sum, map_sum]
apply Fintype.sum_eq_zero
intro n
rw [← mul_assoc, ← mul_assoc]
rw [mul_assoc _ _ b]
rw [ι_normalOrder_superCommute_ofCrAnList_ofCrAnState_eq_zero_mul]
lemma ι_normalOrder_superCommute_ofCrAnList_eq_zero_mul
(φs : List 𝓕.CrAnStates)
(a b c : 𝓕.CrAnAlgebra) :
ι 𝓝(a * [ofCrAnList φs, c]ₛca * b) = 0 := by
change (ι.toLinearMap ∘ₗ normalOrder ∘ₗ
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommute (ofCrAnList φs)) c = 0
have hf : (ι.toLinearMap ∘ₗ normalOrder ∘ₗ
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommute (ofCrAnList φs)) = 0 := by
apply ofCrAnListBasis.ext
intro φs'
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, CrAnAlgebra.ofListBasis_eq_ofList,
LinearMap.coe_comp, Function.comp_apply, LinearMap.flip_apply, AlgHom.toLinearMap_apply,
LinearMap.zero_apply]
rw [ι_normalOrder_superCommute_ofCrAnList_ofCrAnList_eq_zero_mul]
rw [hf]
simp
@[simp]
lemma ι_normalOrder_superCommute_eq_zero_mul
(a b c d : 𝓕.CrAnAlgebra) : ι 𝓝(a * [d, c]ₛca * b) = 0 := by
change (ι.toLinearMap ∘ₗ normalOrder ∘ₗ
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommute.flip c) d = 0
have hf : (ι.toLinearMap ∘ₗ normalOrder ∘ₗ
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommute.flip c) = 0 := by
apply ofCrAnListBasis.ext
intro φs
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, CrAnAlgebra.ofListBasis_eq_ofList,
LinearMap.coe_comp, Function.comp_apply, LinearMap.flip_apply, AlgHom.toLinearMap_apply,
LinearMap.zero_apply]
rw [ι_normalOrder_superCommute_ofCrAnList_eq_zero_mul]
rw [hf]
simp
@[simp]
lemma ι_normalOrder_superCommute_eq_zero_mul_right (b c d : 𝓕.CrAnAlgebra) :
ι 𝓝([d, c]ₛca * b) = 0 := by
rw [← ι_normalOrder_superCommute_eq_zero_mul 1 b c d]
simp
@[simp]
lemma ι_normalOrder_superCommute_eq_zero_mul_left (a c d : 𝓕.CrAnAlgebra) :
ι 𝓝(a * [d, c]ₛca) = 0 := by
rw [← ι_normalOrder_superCommute_eq_zero_mul a 1 c d]
simp
@[simp]
lemma ι_normalOrder_superCommute_eq_zero_mul_mul_right (a b1 b2 c d: 𝓕.CrAnAlgebra) :
ι 𝓝(a * [d, c]ₛca * b1 * b2) = 0 := by
rw [← ι_normalOrder_superCommute_eq_zero_mul a (b1 * b2) c d]
congr 2
noncomm_ring
@[simp]
lemma ι_normalOrder_superCommute_eq_zero (c d : 𝓕.CrAnAlgebra) : ι 𝓝([d, c]ₛca) = 0 := by
rw [← ι_normalOrder_superCommute_eq_zero_mul 1 1 c d]
simp
/-!
## Defining normal order for `FiedOpAlgebra`.
-/
lemma ι_normalOrder_zero_of_mem_ideal (a : 𝓕.CrAnAlgebra)
(h : a ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet) : ι 𝓝(a) = 0 := by
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure] at h
let p {k : Set 𝓕.CrAnAlgebra} (a : CrAnAlgebra 𝓕) (h : a ∈ AddSubgroup.closure k) := ι 𝓝(a) = 0
change p a h
apply AddSubgroup.closure_induction
· intro x hx
obtain ⟨a, ha, b, hb, rfl⟩ := Set.mem_mul.mp hx
obtain ⟨a, ha, c, hc, rfl⟩ := ha
simp only [p]
simp only [fieldOpIdealSet, exists_prop, exists_and_left, Set.mem_setOf_eq] at hc
match hc with
| Or.inl hc =>
obtain ⟨φa, φa', hφa, hφa', rfl⟩ := hc
simp [mul_sub, sub_mul, ← mul_assoc]
| Or.inr (Or.inl hc) =>
obtain ⟨φa, φa', hφa, hφa', rfl⟩ := hc
simp [mul_sub, sub_mul, ← mul_assoc]
| Or.inr (Or.inr (Or.inl hc)) =>
obtain ⟨φa, φa', hφa, hφa', rfl⟩ := hc
simp [mul_sub, sub_mul, ← mul_assoc]
| Or.inr (Or.inr (Or.inr hc)) =>
obtain ⟨φa, φa', hφa, hφa', rfl⟩ := hc
simp [mul_sub, sub_mul, ← mul_assoc]
· simp [p]
· intro x y hx hy
simp only [map_add, p]
intro h1 h2
simp [h1, h2]
· intro x hx
simp [p]
lemma ι_normalOrder_eq_of_equiv (a b : 𝓕.CrAnAlgebra) (h : a ≈ b) :
ι 𝓝(a) = ι 𝓝(b) := by
rw [equiv_iff_sub_mem_ideal] at h
rw [LinearMap.sub_mem_ker_iff.mp]
simp only [LinearMap.mem_ker, ← map_sub]
exact ι_normalOrder_zero_of_mem_ideal (a - b) h
/-- Normal ordering on `FieldOpAlgebra`. -/
noncomputable def normalOrder : FieldOpAlgebra 𝓕 →ₗ[] FieldOpAlgebra 𝓕 where
toFun := Quotient.lift (ι.toLinearMap ∘ₗ CrAnAlgebra.normalOrder) ι_normalOrder_eq_of_equiv
map_add' x y := by
obtain ⟨x, hx⟩ := ι_surjective x
obtain ⟨y, hy⟩ := ι_surjective y
subst hx hy
rw [← map_add, ι_apply, ι_apply, ι_apply]
rw [Quotient.lift_mk, Quotient.lift_mk, Quotient.lift_mk]
simp
map_smul' c y := by
obtain ⟨y, hy⟩ := ι_surjective y
subst hy
rw [← map_smul, ι_apply, ι_apply]
simp
end FieldOpAlgebra
end FieldSpecification