docs: Related to Pauli matrices

This commit is contained in:
jstoobysmith 2024-11-26 09:49:15 +00:00
parent 3cb6fe4982
commit 3b5fbc27e3

View file

@ -34,21 +34,25 @@ def σ2 : Matrix (Fin 2) (Fin 2) := !![0, -I; I, 0]
That is, the matrix `!![1, 0; 0, -1]`. -/
def σ3 : Matrix (Fin 2) (Fin 2) := !![1, 0; 0, -1]
/-- The conjugate transpose of `σ0` is equal to `σ0`. -/
@[simp]
lemma σ0_selfAdjoint : σ0ᴴ = σ0 := by
rw [eta_fin_two σ0ᴴ]
simp [σ0]
/-- The conjugate transpose of `σ1` is equal to `σ1`. -/
@[simp]
lemma σ1_selfAdjoint : σ1ᴴ = σ1 := by
rw [eta_fin_two σ1ᴴ]
simp [σ1]
/-- The conjugate transpose of `σ2` is equal to `σ2`. -/
@[simp]
lemma σ2_selfAdjoint : σ2ᴴ = σ2 := by
rw [eta_fin_two σ2ᴴ]
simp [σ2]
/-- The conjugate transpose of `σ3` is equal to `σ3`. -/
@[simp]
lemma σ3_selfAdjoint : σ3ᴴ = σ3 := by
rw [eta_fin_two σ3ᴴ]
@ -60,6 +64,7 @@ lemma σ3_selfAdjoint : σ3ᴴ = σ3 := by
-/
/-- The trace of `σ0` multiplied by `σ0` is equal to `2`. -/
@[simp]
lemma σ0_σ0_trace : Matrix.trace (σ0 * σ0) = 2 := by
simp only [σ0, cons_mul, Nat.succ_eq_add_one, Nat.reduceAdd, vecMul_cons, head_cons, one_smul,
@ -67,22 +72,27 @@ lemma σ0_σ0_trace : Matrix.trace (σ0 * σ0) = 2 := by
trace_fin_two_of]
norm_num
/-- The trace of `σ0` multiplied by `σ1` is equal to `0`. -/
@[simp]
lemma σ0_σ1_trace : Matrix.trace (σ0 * σ1) = 0 := by
simp [σ0, σ1]
/-- The trace of `σ0` multiplied by `σ2` is equal to `0`. -/
@[simp]
lemma σ0_σ2_trace : Matrix.trace (σ0 * σ2) = 0 := by
simp [σ0, σ2]
/-- The trace of `σ0` multiplied by `σ3` is equal to `0`. -/
@[simp]
lemma σ0_σ3_trace : Matrix.trace (σ0 * σ3) = 0 := by
simp [σ0, σ3]
/-- The trace of `σ1` multiplied by `σ0` is equal to `0`. -/
@[simp]
lemma σ1_σ0_trace : Matrix.trace (σ1 * σ0) = 0 := by
simp [σ1, σ0]
/-- The trace of `σ1` multiplied by `σ1` is equal to `2`. -/
@[simp]
lemma σ1_σ1_trace : Matrix.trace (σ1 * σ1) = 2 := by
simp only [σ1, cons_mul, Nat.succ_eq_add_one, Nat.reduceAdd, vecMul_cons, head_cons, one_smul,
@ -90,22 +100,27 @@ lemma σ1_σ1_trace : Matrix.trace (σ1 * σ1) = 2 := by
trace_fin_two_of]
norm_num
/-- The trace of `σ1` multiplied by `σ2` is equal to `0`. -/
@[simp]
lemma σ1_σ2_trace : Matrix.trace (σ1 * σ2) = 0 := by
simp [σ1, σ2]
/-- The trace of `σ1` multiplied by `σ3` is equal to `0`. -/
@[simp]
lemma σ1_σ3_trace : Matrix.trace (σ1 * σ3) = 0 := by
simp [σ1, σ3]
/-- The trace of `σ2` multiplied by `σ0` is equal to `0`. -/
@[simp]
lemma σ2_σ0_trace : Matrix.trace (σ2 * σ0) = 0 := by
simp [σ2, σ0]
/-- The trace of `σ2` multiplied by `σ1` is equal to `0`. -/
@[simp]
lemma σ2_σ1_trace : Matrix.trace (σ2 * σ1) = 0 := by
simp [σ2, σ1]
/-- The trace of `σ2` multiplied by `σ2` is equal to `2`. -/
@[simp]
lemma σ2_σ2_trace : Matrix.trace (σ2 * σ2) = 2 := by
simp only [σ2, cons_mul, Nat.succ_eq_add_one, Nat.reduceAdd, vecMul_cons, head_cons, one_smul,
@ -113,22 +128,27 @@ lemma σ2_σ2_trace : Matrix.trace (σ2 * σ2) = 2 := by
trace_fin_two_of]
norm_num
/-- The trace of `σ2` multiplied by `σ3` is equal to `0`. -/
@[simp]
lemma σ2_σ3_trace : Matrix.trace (σ2 * σ3) = 0 := by
simp [σ2, σ3]
/-- The trace of `σ3` multiplied by `σ0` is equal to `0`. -/
@[simp]
lemma σ3_σ0_trace : Matrix.trace (σ3 * σ0) = 0 := by
simp [σ3, σ0]
/-- The trace of `σ3` multiplied by `σ1` is equal to `0`. -/
@[simp]
lemma σ3_σ1_trace : Matrix.trace (σ3 * σ1) = 0 := by
simp [σ3, σ1]
/-- The trace of `σ3` multiplied by `σ2` is equal to `0`. -/
@[simp]
lemma σ3_σ2_trace : Matrix.trace (σ3 * σ2) = 0 := by
simp [σ3, σ2]
/-- The trace of `σ3` multiplied by `σ3` is equal to `2`. -/
@[simp]
lemma σ3_σ3_trace : Matrix.trace (σ3 * σ3) = 2 := by
simp only [σ3, cons_mul, Nat.succ_eq_add_one, Nat.reduceAdd, vecMul_cons, head_cons, one_smul,