docs: Related to Pauli matrices
This commit is contained in:
parent
3cb6fe4982
commit
3b5fbc27e3
1 changed files with 20 additions and 0 deletions
|
@ -34,21 +34,25 @@ def σ2 : Matrix (Fin 2) (Fin 2) ℂ := !![0, -I; I, 0]
|
|||
That is, the matrix `!![1, 0; 0, -1]`. -/
|
||||
def σ3 : Matrix (Fin 2) (Fin 2) ℂ := !![1, 0; 0, -1]
|
||||
|
||||
/-- The conjugate transpose of `σ0` is equal to `σ0`. -/
|
||||
@[simp]
|
||||
lemma σ0_selfAdjoint : σ0ᴴ = σ0 := by
|
||||
rw [eta_fin_two σ0ᴴ]
|
||||
simp [σ0]
|
||||
|
||||
/-- The conjugate transpose of `σ1` is equal to `σ1`. -/
|
||||
@[simp]
|
||||
lemma σ1_selfAdjoint : σ1ᴴ = σ1 := by
|
||||
rw [eta_fin_two σ1ᴴ]
|
||||
simp [σ1]
|
||||
|
||||
/-- The conjugate transpose of `σ2` is equal to `σ2`. -/
|
||||
@[simp]
|
||||
lemma σ2_selfAdjoint : σ2ᴴ = σ2 := by
|
||||
rw [eta_fin_two σ2ᴴ]
|
||||
simp [σ2]
|
||||
|
||||
/-- The conjugate transpose of `σ3` is equal to `σ3`. -/
|
||||
@[simp]
|
||||
lemma σ3_selfAdjoint : σ3ᴴ = σ3 := by
|
||||
rw [eta_fin_two σ3ᴴ]
|
||||
|
@ -60,6 +64,7 @@ lemma σ3_selfAdjoint : σ3ᴴ = σ3 := by
|
|||
|
||||
-/
|
||||
|
||||
/-- The trace of `σ0` multiplied by `σ0` is equal to `2`. -/
|
||||
@[simp]
|
||||
lemma σ0_σ0_trace : Matrix.trace (σ0 * σ0) = 2 := by
|
||||
simp only [σ0, cons_mul, Nat.succ_eq_add_one, Nat.reduceAdd, vecMul_cons, head_cons, one_smul,
|
||||
|
@ -67,22 +72,27 @@ lemma σ0_σ0_trace : Matrix.trace (σ0 * σ0) = 2 := by
|
|||
trace_fin_two_of]
|
||||
norm_num
|
||||
|
||||
/-- The trace of `σ0` multiplied by `σ1` is equal to `0`. -/
|
||||
@[simp]
|
||||
lemma σ0_σ1_trace : Matrix.trace (σ0 * σ1) = 0 := by
|
||||
simp [σ0, σ1]
|
||||
|
||||
/-- The trace of `σ0` multiplied by `σ2` is equal to `0`. -/
|
||||
@[simp]
|
||||
lemma σ0_σ2_trace : Matrix.trace (σ0 * σ2) = 0 := by
|
||||
simp [σ0, σ2]
|
||||
|
||||
/-- The trace of `σ0` multiplied by `σ3` is equal to `0`. -/
|
||||
@[simp]
|
||||
lemma σ0_σ3_trace : Matrix.trace (σ0 * σ3) = 0 := by
|
||||
simp [σ0, σ3]
|
||||
|
||||
/-- The trace of `σ1` multiplied by `σ0` is equal to `0`. -/
|
||||
@[simp]
|
||||
lemma σ1_σ0_trace : Matrix.trace (σ1 * σ0) = 0 := by
|
||||
simp [σ1, σ0]
|
||||
|
||||
/-- The trace of `σ1` multiplied by `σ1` is equal to `2`. -/
|
||||
@[simp]
|
||||
lemma σ1_σ1_trace : Matrix.trace (σ1 * σ1) = 2 := by
|
||||
simp only [σ1, cons_mul, Nat.succ_eq_add_one, Nat.reduceAdd, vecMul_cons, head_cons, one_smul,
|
||||
|
@ -90,22 +100,27 @@ lemma σ1_σ1_trace : Matrix.trace (σ1 * σ1) = 2 := by
|
|||
trace_fin_two_of]
|
||||
norm_num
|
||||
|
||||
/-- The trace of `σ1` multiplied by `σ2` is equal to `0`. -/
|
||||
@[simp]
|
||||
lemma σ1_σ2_trace : Matrix.trace (σ1 * σ2) = 0 := by
|
||||
simp [σ1, σ2]
|
||||
|
||||
/-- The trace of `σ1` multiplied by `σ3` is equal to `0`. -/
|
||||
@[simp]
|
||||
lemma σ1_σ3_trace : Matrix.trace (σ1 * σ3) = 0 := by
|
||||
simp [σ1, σ3]
|
||||
|
||||
/-- The trace of `σ2` multiplied by `σ0` is equal to `0`. -/
|
||||
@[simp]
|
||||
lemma σ2_σ0_trace : Matrix.trace (σ2 * σ0) = 0 := by
|
||||
simp [σ2, σ0]
|
||||
|
||||
/-- The trace of `σ2` multiplied by `σ1` is equal to `0`. -/
|
||||
@[simp]
|
||||
lemma σ2_σ1_trace : Matrix.trace (σ2 * σ1) = 0 := by
|
||||
simp [σ2, σ1]
|
||||
|
||||
/-- The trace of `σ2` multiplied by `σ2` is equal to `2`. -/
|
||||
@[simp]
|
||||
lemma σ2_σ2_trace : Matrix.trace (σ2 * σ2) = 2 := by
|
||||
simp only [σ2, cons_mul, Nat.succ_eq_add_one, Nat.reduceAdd, vecMul_cons, head_cons, one_smul,
|
||||
|
@ -113,22 +128,27 @@ lemma σ2_σ2_trace : Matrix.trace (σ2 * σ2) = 2 := by
|
|||
trace_fin_two_of]
|
||||
norm_num
|
||||
|
||||
/-- The trace of `σ2` multiplied by `σ3` is equal to `0`. -/
|
||||
@[simp]
|
||||
lemma σ2_σ3_trace : Matrix.trace (σ2 * σ3) = 0 := by
|
||||
simp [σ2, σ3]
|
||||
|
||||
/-- The trace of `σ3` multiplied by `σ0` is equal to `0`. -/
|
||||
@[simp]
|
||||
lemma σ3_σ0_trace : Matrix.trace (σ3 * σ0) = 0 := by
|
||||
simp [σ3, σ0]
|
||||
|
||||
/-- The trace of `σ3` multiplied by `σ1` is equal to `0`. -/
|
||||
@[simp]
|
||||
lemma σ3_σ1_trace : Matrix.trace (σ3 * σ1) = 0 := by
|
||||
simp [σ3, σ1]
|
||||
|
||||
/-- The trace of `σ3` multiplied by `σ2` is equal to `0`. -/
|
||||
@[simp]
|
||||
lemma σ3_σ2_trace : Matrix.trace (σ3 * σ2) = 0 := by
|
||||
simp [σ3, σ2]
|
||||
|
||||
/-- The trace of `σ3` multiplied by `σ3` is equal to `2`. -/
|
||||
@[simp]
|
||||
lemma σ3_σ3_trace : Matrix.trace (σ3 * σ3) = 2 := by
|
||||
simp only [σ3, cons_mul, Nat.succ_eq_add_one, Nat.reduceAdd, vecMul_cons, head_cons, one_smul,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue