docs: metric-lemmas
This commit is contained in:
parent
fe0f2c26c7
commit
3cb6fe4982
3 changed files with 18 additions and 2 deletions
|
@ -87,6 +87,8 @@ lemma contrMatrix_basis_expand : {η | μ ν}ᵀ.tensor =
|
|||
simp only [Fin.isValue, Lorentz.complexContrBasisFin4, Basis.coe_reindex, Function.comp_apply]
|
||||
rfl
|
||||
|
||||
/-- The expansion of the Lorentz contrvariant metric in terms of basis vectors as
|
||||
a structured tensor tree. -/
|
||||
lemma contrMatrix_basis_expand_tree : {η | μ ν}ᵀ.tensor =
|
||||
(TensorTree.add (tensorNode (basisVector ![Color.up, Color.up] (fun _ => 0))) <|
|
||||
TensorTree.add (smul (-1) (tensorNode (basisVector ![Color.up, Color.up] (fun _ => 1)))) <|
|
||||
|
@ -94,6 +96,7 @@ lemma contrMatrix_basis_expand_tree : {η | μ ν}ᵀ.tensor =
|
|||
(smul (-1) (tensorNode (basisVector ![Color.up, Color.up] (fun _ => 3))))).tensor :=
|
||||
contrMatrix_basis_expand
|
||||
|
||||
/-- The expansion of the Fermionic left metric in terms of basis vectors. -/
|
||||
lemma leftMetric_expand : {εL | α β}ᵀ.tensor =
|
||||
- basisVector ![Color.upL, Color.upL] (fun | 0 => 0 | 1 => 1)
|
||||
+ basisVector ![Color.upL, Color.upL] (fun | 0 => 1 | 1 => 0) := by
|
||||
|
@ -112,12 +115,15 @@ lemma leftMetric_expand : {εL | α β}ᵀ.tensor =
|
|||
· rfl
|
||||
· rfl
|
||||
|
||||
/-- The expansion of the Fermionic left metric in terms of basis vectors as a structured
|
||||
tensor tree. -/
|
||||
lemma leftMetric_expand_tree : {εL | α β}ᵀ.tensor =
|
||||
(TensorTree.add (smul (-1) (tensorNode (basisVector ![Color.upL, Color.upL]
|
||||
(fun | 0 => 0 | 1 => 1)))) <|
|
||||
(tensorNode (basisVector ![Color.upL, Color.upL] (fun | 0 => 1 | 1 => 0)))).tensor :=
|
||||
leftMetric_expand
|
||||
|
||||
/-- The expansion of the Fermionic alt-left metric in terms of basis vectors. -/
|
||||
lemma altLeftMetric_expand : {εL' | α β}ᵀ.tensor =
|
||||
basisVector ![Color.downL, Color.downL] (fun | 0 => 0 | 1 => 1)
|
||||
- basisVector ![Color.downL, Color.downL] (fun | 0 => 1 | 1 => 0) := by
|
||||
|
@ -135,6 +141,8 @@ lemma altLeftMetric_expand : {εL' | α β}ᵀ.tensor =
|
|||
· rfl
|
||||
· rfl
|
||||
|
||||
/-- The expansion of the Fermionic alt-left metric in terms of basis vectors as a
|
||||
structured tensor tree. -/
|
||||
lemma altLeftMetric_expand_tree : {εL' | α β}ᵀ.tensor =
|
||||
(TensorTree.add (tensorNode (basisVector ![Color.downL, Color.downL]
|
||||
(fun | 0 => 0 | 1 => 1))) <|
|
||||
|
@ -142,6 +150,7 @@ lemma altLeftMetric_expand_tree : {εL' | α β}ᵀ.tensor =
|
|||
(fun | 0 => 1 | 1 => 0))))).tensor :=
|
||||
altLeftMetric_expand
|
||||
|
||||
/-- The expansion of the Fermionic right metric in terms of basis vectors. -/
|
||||
lemma rightMetric_expand : {εR | α β}ᵀ.tensor =
|
||||
- basisVector ![Color.upR, Color.upR] (fun | 0 => 0 | 1 => 1)
|
||||
+ basisVector ![Color.upR, Color.upR] (fun | 0 => 1 | 1 => 0) := by
|
||||
|
@ -160,12 +169,15 @@ lemma rightMetric_expand : {εR | α β}ᵀ.tensor =
|
|||
· rfl
|
||||
· rfl
|
||||
|
||||
/-- The expansion of the Fermionic right metric in terms of basis vectors as a
|
||||
structured tensor tree. -/
|
||||
lemma rightMetric_expand_tree : {εR | α β}ᵀ.tensor =
|
||||
(TensorTree.add (smul (-1) (tensorNode (basisVector ![Color.upR, Color.upR]
|
||||
(fun | 0 => 0 | 1 => 1)))) <|
|
||||
(tensorNode (basisVector ![Color.upR, Color.upR] (fun | 0 => 1 | 1 => 0)))).tensor :=
|
||||
rightMetric_expand
|
||||
|
||||
/-- The expansion of the Fermionic alt-right metric in terms of basis vectors. -/
|
||||
lemma altRightMetric_expand : {εR' | α β}ᵀ.tensor =
|
||||
basisVector ![Color.downR, Color.downR] (fun | 0 => 0 | 1 => 1)
|
||||
- basisVector ![Color.downR, Color.downR] (fun | 0 => 1 | 1 => 0) := by
|
||||
|
@ -183,6 +195,8 @@ lemma altRightMetric_expand : {εR' | α β}ᵀ.tensor =
|
|||
· rfl
|
||||
· rfl
|
||||
|
||||
/-- The expansion of the Fermionic alt-right metric in terms of basis vectors as a
|
||||
structured tensor tree. -/
|
||||
lemma altRightMetric_expand_tree : {εR' | α β}ᵀ.tensor =
|
||||
(TensorTree.add (tensorNode (basisVector
|
||||
![Color.downR, Color.downR] (fun | 0 => 0 | 1 => 1))) <|
|
||||
|
|
|
@ -101,7 +101,7 @@ informal_lemma altRightMetric_contr_rightMetric where
|
|||
def leftMetricMulRightMap := (Sum.elim ![Color.upL, Color.upL] ![Color.upR, Color.upR]) ∘
|
||||
finSumFinEquiv.symm
|
||||
|
||||
/- Expansion of the product of `εL` and `εR` in terms of a basis. -/
|
||||
/-- Expansion of the product of `εL` and `εR` in terms of a basis. -/
|
||||
lemma leftMetric_prod_rightMetric : {εL | α α' ⊗ εR | β β'}ᵀ.tensor
|
||||
= basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
|
||||
- basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)
|
||||
|
@ -134,7 +134,7 @@ lemma leftMetric_prod_rightMetric : {εL | α α' ⊗ εR | β β'}ᵀ.tensor
|
|||
funext x
|
||||
fin_cases x <;> rfl
|
||||
|
||||
/- Expansion of the product of `εL` and `εR` in terms of a basis, as a tensor tree. -/
|
||||
/-- Expansion of the product of `εL` and `εR` in terms of a basis, as a tensor tree. -/
|
||||
lemma leftMetric_prod_rightMetric_tree : {εL | α α' ⊗ εR | β β'}ᵀ.tensor
|
||||
= (TensorTree.add (tensorNode
|
||||
(basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1))) <|
|
||||
|
|
|
@ -30,6 +30,8 @@ open CategoryTheory.MonoidalCategory
|
|||
/-- The raw `2x2` matrix corresponding to the metric for fermions. -/
|
||||
def metricRaw : Matrix (Fin 2) (Fin 2) ℂ := !![0, 1; -1, 0]
|
||||
|
||||
/-- Multiplying an element of `SL(2, ℂ)` on the left with the metric `𝓔` is equivalent
|
||||
to multiplying the inverse-transpose of that element on the right with the metric. -/
|
||||
lemma comm_metricRaw (M : SL(2,ℂ)) : M.1 * metricRaw = metricRaw * (M.1⁻¹)ᵀ := by
|
||||
rw [metricRaw]
|
||||
rw [Lorentz.SL2C.inverse_coe, eta_fin_two M.1]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue