refactor: Some replacement with rfl
This commit is contained in:
parent
48bec8c891
commit
3e1cd363bd
5 changed files with 12 additions and 22 deletions
|
@ -112,7 +112,7 @@ lemma succAbove_succAbove_predAboveI (i : Fin n.succ.succ) (j : Fin n.succ) (x :
|
|||
· rw [Fin.succAbove_of_castSucc_lt _ _ hx2]
|
||||
nth_rewrite 2 [Fin.succAbove_of_castSucc_lt _ _]
|
||||
· rw [Fin.succAbove_of_le_castSucc]
|
||||
· simp [Fin.ext_iff]
|
||||
· rfl
|
||||
· exact hx1
|
||||
· rw [Fin.lt_def] at hx2 ⊢
|
||||
simp_all
|
||||
|
@ -159,7 +159,7 @@ lemma succAbove_succAbove_predAboveI (i : Fin n.succ.succ) (j : Fin n.succ) (x :
|
|||
rw [Fin.succAbove_of_le_castSucc _ _ hx2]
|
||||
nth_rewrite 2 [Fin.succAbove_of_le_castSucc]
|
||||
· rw [Fin.succAbove_of_castSucc_lt]
|
||||
· simp [Fin.ext_iff]
|
||||
· rfl
|
||||
exact Fin.castSucc_lt_succ_iff.mpr hx1
|
||||
· rw [Fin.le_def] at hx2 ⊢
|
||||
simp_all
|
||||
|
@ -180,11 +180,10 @@ lemma finExtractOne_apply_eq {n : ℕ} (i : Fin n.succ) :
|
|||
Equiv.sumCongr_apply, Equiv.coe_trans, Equiv.sumComm_apply, Equiv.coe_refl, Fin.isValue]
|
||||
have h1 :
|
||||
Fin.cast (finExtractOne.proof_1 i) i = Fin.castAdd ((n - ↑i)) ⟨i.1, lt_add_one i.1⟩ := by
|
||||
simp [Fin.ext_iff]
|
||||
rfl
|
||||
rw [h1, finSumFinEquiv_symm_apply_castAdd]
|
||||
simp only [Nat.succ_eq_add_one, Sum.map_inl, Function.comp_apply, Fin.isValue]
|
||||
have h2 : @Fin.mk (↑i + 1) ↑i (lt_add_one i.1) = Fin.natAdd i.val 1 := by
|
||||
simp [Fin.ext_iff]
|
||||
have h2 : @Fin.mk (↑i + 1) ↑i (lt_add_one i.1) = Fin.natAdd i.val 1 := rfl
|
||||
rw [h2, finSumFinEquiv_symm_apply_natAdd]
|
||||
rfl
|
||||
|
||||
|
@ -202,9 +201,7 @@ lemma finExtractOne_symm_inr {n : ℕ} (i : Fin n.succ) :
|
|||
· have h1 : (finSumFinEquiv.symm (Fin.cast (finExtractOne.proof_2 i).symm x)) =
|
||||
Sum.inl ⟨x, hi⟩ := by
|
||||
rw [← finSumFinEquiv_symm_apply_castAdd]
|
||||
apply congrArg
|
||||
ext
|
||||
simp
|
||||
rfl
|
||||
rw [h1]
|
||||
simp only [Nat.succ_eq_add_one, Equiv.sumAssoc_symm_apply_inr_inl, Sum.map_inl,
|
||||
Equiv.symm_trans_apply, Equiv.symm_symm, Equiv.sumComm_symm, Equiv.sumComm_apply,
|
||||
|
@ -244,7 +241,6 @@ lemma finExtractOne_symm_inl_apply {n : ℕ} (i : Fin n.succ) :
|
|||
Equiv.symm_symm, Equiv.sumCongr_symm, Equiv.refl_symm, Equiv.sumCongr_apply, Equiv.coe_refl,
|
||||
Sum.map_inl, id_eq, Equiv.sumAssoc_symm_apply_inl, Equiv.sumComm_symm, Equiv.sumComm_apply,
|
||||
Sum.swap_inl, finSumFinEquiv_apply_right, finSumFinEquiv_apply_left, finCongr_apply]
|
||||
ext
|
||||
rfl
|
||||
|
||||
/-- Given an equivalence `Fin n.succ.succ ≃ Fin n.succ.succ`, and an `i : Fin n.succ.succ`,
|
||||
|
@ -276,6 +272,8 @@ lemma finExtractOnPermHom_inv (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fi
|
|||
simp only [Nat.succ_eq_add_one, Fin.castSucc_mk]
|
||||
omega
|
||||
|
||||
/-- Given an equivalence `Fin n.succ.succ ≃ Fin n.succ.succ`, and an `i : Fin n.succ.succ`,
|
||||
the equivalence `Fin n.succ ≃ Fin n.succ` obtained by dropping `i` and it's image. -/
|
||||
def finExtractOnePerm (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fin n.succ.succ) :
|
||||
Fin n.succ ≃ Fin n.succ where
|
||||
toFun x := finExtractOnPermHom i σ x
|
||||
|
@ -320,9 +318,7 @@ lemma finExtractTwo_symm_inl_inr_apply {n : ℕ} (i : Fin n.succ.succ) (j : Fin
|
|||
|
||||
@[simp]
|
||||
lemma finExtractTwo_symm_inl_inl_apply {n : ℕ} (i : Fin n.succ.succ) (j : Fin n.succ) :
|
||||
(finExtractTwo i j).symm (Sum.inl (Sum.inl 0)) = i := by
|
||||
rw [finExtractTwo]
|
||||
simp
|
||||
(finExtractTwo i j).symm (Sum.inl (Sum.inl 0)) = i := by rfl
|
||||
|
||||
@[simp]
|
||||
lemma finExtractTwo_apply_snd {n : ℕ} (i : Fin n.succ.succ) (j : Fin n.succ) :
|
||||
|
|
|
@ -162,7 +162,7 @@ lemma repSelfAdjointMatrix_basis (i : Fin 1 ⊕ Fin 3) :
|
|||
Fin.default_eq_zero, Fin.isValue, Finset.sum_singleton]
|
||||
nth_rewrite 1 [← (Basis.sum_repr PauliMatrix.σSAL
|
||||
((repSelfAdjointMatrix M) (PauliMatrix.σSAL i)))]
|
||||
congr
|
||||
rfl
|
||||
|
||||
lemma repSelfAdjointMatrix_σSA (i : Fin 1 ⊕ Fin 3) :
|
||||
SL2C.repSelfAdjointMatrix M (PauliMatrix.σSA i) =
|
||||
|
|
|
@ -56,14 +56,10 @@ def toEquiv (m : f ⟶ g) : f.left ≃ g.left where
|
|||
|
||||
@[simp]
|
||||
lemma toEquiv_id (f : OverColor C) : toEquiv (𝟙 f) = Equiv.refl f.left := by
|
||||
ext x
|
||||
simp only [toEquiv, Equiv.coe_fn_mk, Equiv.refl_apply]
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
lemma toEquiv_comp (m : f ⟶ g) (n : g ⟶ h) : toEquiv (m ≫ n) = (toEquiv m).trans (toEquiv n) := by
|
||||
ext x
|
||||
simp only [toEquiv, Equiv.coe_fn_mk, Equiv.trans_apply]
|
||||
rfl
|
||||
|
||||
lemma toEquiv_symm_apply (m : f ⟶ g) (i : g.left) :
|
||||
|
|
|
@ -489,7 +489,6 @@ def obj' : MonoidalFunctor (OverColor C) (Rep k G) where
|
|||
simp only [discreteFunctorMapEqIso, Functor.mapIso_hom, eqToIso.hom, Functor.mapIso_inv,
|
||||
eqToIso.inv, LinearEquiv.ofLinear_apply]
|
||||
rw [discreteFun_hom_trans]
|
||||
apply congrArg
|
||||
rfl
|
||||
μ_natural_left := μ_natural_left F
|
||||
μ_natural_right := μ_natural_right F
|
||||
|
@ -672,7 +671,7 @@ lemma μIso_inv_tprod (F : Discrete C ⥤ Rep k G) (X Y : OverColor C)
|
|||
change ((Action.forget _ _).mapIso ((lift.obj F).μIso X Y)).inv (PiTensorProduct.tprod k p) = _
|
||||
trans ((Action.forget _ _).mapIso ((lift.obj F).μIso X Y)).toLinearEquiv.symm
|
||||
(PiTensorProduct.tprod k p)
|
||||
· congr
|
||||
· rfl
|
||||
erw [← LinearEquiv.eq_symm_apply]
|
||||
change _ = ((lift.obj F).μ X Y).hom _
|
||||
erw [obj_μ_tprod_tmul]
|
||||
|
@ -710,8 +709,7 @@ def forgetLiftAppV (c : C) : ((lift.obj F).obj (OverColor.mk (fun (_ : Fin 1) =>
|
|||
@[simp]
|
||||
lemma forgetLiftAppV_symm_apply (c : C) (x : (F.obj (Discrete.mk c)).V) :
|
||||
(forgetLiftAppV F c).symm x = PiTensorProduct.tprod k (fun _ => x) := by
|
||||
simp only [forgetLiftAppV, Fin.isValue, Functor.id_obj]
|
||||
erw [PiTensorProduct.subsingletonEquiv_symm_apply]
|
||||
rfl
|
||||
|
||||
/-- The `forgetLiftAppV` function takes an object `c` of type `C` and returns a isomorphism
|
||||
between the objects obtained by applying the lift of `F` and that obtained by applying
|
||||
|
|
|
@ -54,7 +54,7 @@ lemma swap_map_eq (x : Fin n) : (q.swapI.succAbove (q.swapJ.succAbove
|
|||
apply congrArg
|
||||
rw [succAbove_succAbove_predAboveI (predAboveI (q.j.succAbove q.k) q.j)]
|
||||
rw [succAbove_succAbove_predAboveI (predAboveI (q.i.succAbove (q.j.succAbove q.k)) q.i)]
|
||||
congr
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
lemma swapI_neq_i : ¬ q.swapI = q.i := by
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue