refactor: Some replacement with rfl

This commit is contained in:
jstoobysmith 2024-10-19 10:34:30 +00:00
parent 48bec8c891
commit 3e1cd363bd
5 changed files with 12 additions and 22 deletions

View file

@ -112,7 +112,7 @@ lemma succAbove_succAbove_predAboveI (i : Fin n.succ.succ) (j : Fin n.succ) (x :
· rw [Fin.succAbove_of_castSucc_lt _ _ hx2]
nth_rewrite 2 [Fin.succAbove_of_castSucc_lt _ _]
· rw [Fin.succAbove_of_le_castSucc]
· simp [Fin.ext_iff]
· rfl
· exact hx1
· rw [Fin.lt_def] at hx2 ⊢
simp_all
@ -159,7 +159,7 @@ lemma succAbove_succAbove_predAboveI (i : Fin n.succ.succ) (j : Fin n.succ) (x :
rw [Fin.succAbove_of_le_castSucc _ _ hx2]
nth_rewrite 2 [Fin.succAbove_of_le_castSucc]
· rw [Fin.succAbove_of_castSucc_lt]
· simp [Fin.ext_iff]
· rfl
exact Fin.castSucc_lt_succ_iff.mpr hx1
· rw [Fin.le_def] at hx2 ⊢
simp_all
@ -180,11 +180,10 @@ lemma finExtractOne_apply_eq {n : } (i : Fin n.succ) :
Equiv.sumCongr_apply, Equiv.coe_trans, Equiv.sumComm_apply, Equiv.coe_refl, Fin.isValue]
have h1 :
Fin.cast (finExtractOne.proof_1 i) i = Fin.castAdd ((n - ↑i)) ⟨i.1, lt_add_one i.1⟩ := by
simp [Fin.ext_iff]
rfl
rw [h1, finSumFinEquiv_symm_apply_castAdd]
simp only [Nat.succ_eq_add_one, Sum.map_inl, Function.comp_apply, Fin.isValue]
have h2 : @Fin.mk (↑i + 1) ↑i (lt_add_one i.1) = Fin.natAdd i.val 1 := by
simp [Fin.ext_iff]
have h2 : @Fin.mk (↑i + 1) ↑i (lt_add_one i.1) = Fin.natAdd i.val 1 := rfl
rw [h2, finSumFinEquiv_symm_apply_natAdd]
rfl
@ -202,9 +201,7 @@ lemma finExtractOne_symm_inr {n : } (i : Fin n.succ) :
· have h1 : (finSumFinEquiv.symm (Fin.cast (finExtractOne.proof_2 i).symm x)) =
Sum.inl ⟨x, hi⟩ := by
rw [← finSumFinEquiv_symm_apply_castAdd]
apply congrArg
ext
simp
rfl
rw [h1]
simp only [Nat.succ_eq_add_one, Equiv.sumAssoc_symm_apply_inr_inl, Sum.map_inl,
Equiv.symm_trans_apply, Equiv.symm_symm, Equiv.sumComm_symm, Equiv.sumComm_apply,
@ -244,7 +241,6 @@ lemma finExtractOne_symm_inl_apply {n : } (i : Fin n.succ) :
Equiv.symm_symm, Equiv.sumCongr_symm, Equiv.refl_symm, Equiv.sumCongr_apply, Equiv.coe_refl,
Sum.map_inl, id_eq, Equiv.sumAssoc_symm_apply_inl, Equiv.sumComm_symm, Equiv.sumComm_apply,
Sum.swap_inl, finSumFinEquiv_apply_right, finSumFinEquiv_apply_left, finCongr_apply]
ext
rfl
/-- Given an equivalence `Fin n.succ.succ ≃ Fin n.succ.succ`, and an `i : Fin n.succ.succ`,
@ -276,6 +272,8 @@ lemma finExtractOnPermHom_inv (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fi
simp only [Nat.succ_eq_add_one, Fin.castSucc_mk]
omega
/-- Given an equivalence `Fin n.succ.succ ≃ Fin n.succ.succ`, and an `i : Fin n.succ.succ`,
the equivalence `Fin n.succ ≃ Fin n.succ` obtained by dropping `i` and it's image. -/
def finExtractOnePerm (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fin n.succ.succ) :
Fin n.succ ≃ Fin n.succ where
toFun x := finExtractOnPermHom i σ x
@ -320,9 +318,7 @@ lemma finExtractTwo_symm_inl_inr_apply {n : } (i : Fin n.succ.succ) (j : Fin
@[simp]
lemma finExtractTwo_symm_inl_inl_apply {n : } (i : Fin n.succ.succ) (j : Fin n.succ) :
(finExtractTwo i j).symm (Sum.inl (Sum.inl 0)) = i := by
rw [finExtractTwo]
simp
(finExtractTwo i j).symm (Sum.inl (Sum.inl 0)) = i := by rfl
@[simp]
lemma finExtractTwo_apply_snd {n : } (i : Fin n.succ.succ) (j : Fin n.succ) :

View file

@ -162,7 +162,7 @@ lemma repSelfAdjointMatrix_basis (i : Fin 1 ⊕ Fin 3) :
Fin.default_eq_zero, Fin.isValue, Finset.sum_singleton]
nth_rewrite 1 [← (Basis.sum_repr PauliMatrix.σSAL
((repSelfAdjointMatrix M) (PauliMatrix.σSAL i)))]
congr
rfl
lemma repSelfAdjointMatrix_σSA (i : Fin 1 ⊕ Fin 3) :
SL2C.repSelfAdjointMatrix M (PauliMatrix.σSA i) =

View file

@ -56,14 +56,10 @@ def toEquiv (m : f ⟶ g) : f.left ≃ g.left where
@[simp]
lemma toEquiv_id (f : OverColor C) : toEquiv (𝟙 f) = Equiv.refl f.left := by
ext x
simp only [toEquiv, Equiv.coe_fn_mk, Equiv.refl_apply]
rfl
@[simp]
lemma toEquiv_comp (m : f ⟶ g) (n : g ⟶ h) : toEquiv (m ≫ n) = (toEquiv m).trans (toEquiv n) := by
ext x
simp only [toEquiv, Equiv.coe_fn_mk, Equiv.trans_apply]
rfl
lemma toEquiv_symm_apply (m : f ⟶ g) (i : g.left) :

View file

@ -489,7 +489,6 @@ def obj' : MonoidalFunctor (OverColor C) (Rep k G) where
simp only [discreteFunctorMapEqIso, Functor.mapIso_hom, eqToIso.hom, Functor.mapIso_inv,
eqToIso.inv, LinearEquiv.ofLinear_apply]
rw [discreteFun_hom_trans]
apply congrArg
rfl
μ_natural_left := μ_natural_left F
μ_natural_right := μ_natural_right F
@ -672,7 +671,7 @@ lemma μIso_inv_tprod (F : Discrete C ⥤ Rep k G) (X Y : OverColor C)
change ((Action.forget _ _).mapIso ((lift.obj F).μIso X Y)).inv (PiTensorProduct.tprod k p) = _
trans ((Action.forget _ _).mapIso ((lift.obj F).μIso X Y)).toLinearEquiv.symm
(PiTensorProduct.tprod k p)
· congr
· rfl
erw [← LinearEquiv.eq_symm_apply]
change _ = ((lift.obj F).μ X Y).hom _
erw [obj_μ_tprod_tmul]
@ -710,8 +709,7 @@ def forgetLiftAppV (c : C) : ((lift.obj F).obj (OverColor.mk (fun (_ : Fin 1) =>
@[simp]
lemma forgetLiftAppV_symm_apply (c : C) (x : (F.obj (Discrete.mk c)).V) :
(forgetLiftAppV F c).symm x = PiTensorProduct.tprod k (fun _ => x) := by
simp only [forgetLiftAppV, Fin.isValue, Functor.id_obj]
erw [PiTensorProduct.subsingletonEquiv_symm_apply]
rfl
/-- The `forgetLiftAppV` function takes an object `c` of type `C` and returns a isomorphism
between the objects obtained by applying the lift of `F` and that obtained by applying

View file

@ -54,7 +54,7 @@ lemma swap_map_eq (x : Fin n) : (q.swapI.succAbove (q.swapJ.succAbove
apply congrArg
rw [succAbove_succAbove_predAboveI (predAboveI (q.j.succAbove q.k) q.j)]
rw [succAbove_succAbove_predAboveI (predAboveI (q.i.succAbove (q.j.succAbove q.k)) q.i)]
congr
rfl
@[simp]
lemma swapI_neq_i : ¬ q.swapI = q.i := by