refactor: Some replacement with rfl
This commit is contained in:
parent
48bec8c891
commit
3e1cd363bd
5 changed files with 12 additions and 22 deletions
|
@ -112,7 +112,7 @@ lemma succAbove_succAbove_predAboveI (i : Fin n.succ.succ) (j : Fin n.succ) (x :
|
|||
· rw [Fin.succAbove_of_castSucc_lt _ _ hx2]
|
||||
nth_rewrite 2 [Fin.succAbove_of_castSucc_lt _ _]
|
||||
· rw [Fin.succAbove_of_le_castSucc]
|
||||
· simp [Fin.ext_iff]
|
||||
· rfl
|
||||
· exact hx1
|
||||
· rw [Fin.lt_def] at hx2 ⊢
|
||||
simp_all
|
||||
|
@ -159,7 +159,7 @@ lemma succAbove_succAbove_predAboveI (i : Fin n.succ.succ) (j : Fin n.succ) (x :
|
|||
rw [Fin.succAbove_of_le_castSucc _ _ hx2]
|
||||
nth_rewrite 2 [Fin.succAbove_of_le_castSucc]
|
||||
· rw [Fin.succAbove_of_castSucc_lt]
|
||||
· simp [Fin.ext_iff]
|
||||
· rfl
|
||||
exact Fin.castSucc_lt_succ_iff.mpr hx1
|
||||
· rw [Fin.le_def] at hx2 ⊢
|
||||
simp_all
|
||||
|
@ -180,11 +180,10 @@ lemma finExtractOne_apply_eq {n : ℕ} (i : Fin n.succ) :
|
|||
Equiv.sumCongr_apply, Equiv.coe_trans, Equiv.sumComm_apply, Equiv.coe_refl, Fin.isValue]
|
||||
have h1 :
|
||||
Fin.cast (finExtractOne.proof_1 i) i = Fin.castAdd ((n - ↑i)) ⟨i.1, lt_add_one i.1⟩ := by
|
||||
simp [Fin.ext_iff]
|
||||
rfl
|
||||
rw [h1, finSumFinEquiv_symm_apply_castAdd]
|
||||
simp only [Nat.succ_eq_add_one, Sum.map_inl, Function.comp_apply, Fin.isValue]
|
||||
have h2 : @Fin.mk (↑i + 1) ↑i (lt_add_one i.1) = Fin.natAdd i.val 1 := by
|
||||
simp [Fin.ext_iff]
|
||||
have h2 : @Fin.mk (↑i + 1) ↑i (lt_add_one i.1) = Fin.natAdd i.val 1 := rfl
|
||||
rw [h2, finSumFinEquiv_symm_apply_natAdd]
|
||||
rfl
|
||||
|
||||
|
@ -202,9 +201,7 @@ lemma finExtractOne_symm_inr {n : ℕ} (i : Fin n.succ) :
|
|||
· have h1 : (finSumFinEquiv.symm (Fin.cast (finExtractOne.proof_2 i).symm x)) =
|
||||
Sum.inl ⟨x, hi⟩ := by
|
||||
rw [← finSumFinEquiv_symm_apply_castAdd]
|
||||
apply congrArg
|
||||
ext
|
||||
simp
|
||||
rfl
|
||||
rw [h1]
|
||||
simp only [Nat.succ_eq_add_one, Equiv.sumAssoc_symm_apply_inr_inl, Sum.map_inl,
|
||||
Equiv.symm_trans_apply, Equiv.symm_symm, Equiv.sumComm_symm, Equiv.sumComm_apply,
|
||||
|
@ -244,7 +241,6 @@ lemma finExtractOne_symm_inl_apply {n : ℕ} (i : Fin n.succ) :
|
|||
Equiv.symm_symm, Equiv.sumCongr_symm, Equiv.refl_symm, Equiv.sumCongr_apply, Equiv.coe_refl,
|
||||
Sum.map_inl, id_eq, Equiv.sumAssoc_symm_apply_inl, Equiv.sumComm_symm, Equiv.sumComm_apply,
|
||||
Sum.swap_inl, finSumFinEquiv_apply_right, finSumFinEquiv_apply_left, finCongr_apply]
|
||||
ext
|
||||
rfl
|
||||
|
||||
/-- Given an equivalence `Fin n.succ.succ ≃ Fin n.succ.succ`, and an `i : Fin n.succ.succ`,
|
||||
|
@ -276,6 +272,8 @@ lemma finExtractOnPermHom_inv (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fi
|
|||
simp only [Nat.succ_eq_add_one, Fin.castSucc_mk]
|
||||
omega
|
||||
|
||||
/-- Given an equivalence `Fin n.succ.succ ≃ Fin n.succ.succ`, and an `i : Fin n.succ.succ`,
|
||||
the equivalence `Fin n.succ ≃ Fin n.succ` obtained by dropping `i` and it's image. -/
|
||||
def finExtractOnePerm (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fin n.succ.succ) :
|
||||
Fin n.succ ≃ Fin n.succ where
|
||||
toFun x := finExtractOnPermHom i σ x
|
||||
|
@ -320,9 +318,7 @@ lemma finExtractTwo_symm_inl_inr_apply {n : ℕ} (i : Fin n.succ.succ) (j : Fin
|
|||
|
||||
@[simp]
|
||||
lemma finExtractTwo_symm_inl_inl_apply {n : ℕ} (i : Fin n.succ.succ) (j : Fin n.succ) :
|
||||
(finExtractTwo i j).symm (Sum.inl (Sum.inl 0)) = i := by
|
||||
rw [finExtractTwo]
|
||||
simp
|
||||
(finExtractTwo i j).symm (Sum.inl (Sum.inl 0)) = i := by rfl
|
||||
|
||||
@[simp]
|
||||
lemma finExtractTwo_apply_snd {n : ℕ} (i : Fin n.succ.succ) (j : Fin n.succ) :
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue