feat: Update contraction for index notation
This commit is contained in:
parent
e90e41751e
commit
3f5eb58db4
10 changed files with 401 additions and 153 deletions
|
@ -3,7 +3,7 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.ColorCat.Basic
|
||||
import HepLean.Tensors.OverColor.Basic
|
||||
import HepLean.Mathematics.PiTensorProduct
|
||||
/-!
|
||||
|
||||
|
@ -30,6 +30,21 @@ inductive Color
|
|||
| up : Color
|
||||
| down : Color
|
||||
|
||||
def τ : Color → Color
|
||||
| Color.upL => Color.downL
|
||||
| Color.downL => Color.upL
|
||||
| Color.upR => Color.downR
|
||||
| Color.downR => Color.upR
|
||||
| Color.up => Color.down
|
||||
| Color.down => Color.up
|
||||
|
||||
def evalNo : Color → ℕ
|
||||
| Color.upL => 2
|
||||
| Color.downL => 2
|
||||
| Color.upR => 2
|
||||
| Color.downR => 2
|
||||
| Color.up => 4
|
||||
| Color.down => 4
|
||||
/-- The corresponding representations associated with a color. -/
|
||||
def colorToRep (c : Color) : Rep ℂ SL(2, ℂ) :=
|
||||
match c with
|
0
HepLean/Tensors/ComplexLorentz/ContrNatTransform.lean
Normal file
0
HepLean/Tensors/ComplexLorentz/ContrNatTransform.lean
Normal file
38
HepLean/Tensors/ComplexLorentz/Examples.lean
Normal file
38
HepLean/Tensors/ComplexLorentz/Examples.lean
Normal file
|
@ -0,0 +1,38 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.Tree.Basic
|
||||
import HepLean.Tensors.ComplexLorentz.TensorStruct
|
||||
import HepLean.Tensors.Tree.Elab
|
||||
/-!
|
||||
|
||||
## The tensor structure for complex Lorentz tensors
|
||||
|
||||
-/
|
||||
open IndexNotation
|
||||
open CategoryTheory
|
||||
open MonoidalCategory
|
||||
open Matrix
|
||||
open MatrixGroups
|
||||
open Complex
|
||||
open TensorProduct
|
||||
open IndexNotation
|
||||
open CategoryTheory
|
||||
|
||||
|
||||
noncomputable section
|
||||
|
||||
namespace complexLorentzTensor
|
||||
|
||||
def upDown : Fin 2 → complexLorentzTensor.C
|
||||
| 0 => Fermion.Color.up
|
||||
| 1 => Fermion.Color.down
|
||||
|
||||
variable (T S : complexLorentzTensor.F.obj (OverColor.mk upDown))
|
||||
|
||||
#check {T | i i}ᵀ.dot
|
||||
end complexLorentzTensor
|
||||
|
||||
end
|
36
HepLean/Tensors/ComplexLorentz/TensorStruct.lean
Normal file
36
HepLean/Tensors/ComplexLorentz/TensorStruct.lean
Normal file
|
@ -0,0 +1,36 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.Tree.Basic
|
||||
import HepLean.Tensors.ComplexLorentz.ColorFun
|
||||
/-!
|
||||
|
||||
## The tensor structure for complex Lorentz tensors
|
||||
|
||||
-/
|
||||
open IndexNotation
|
||||
open CategoryTheory
|
||||
open MonoidalCategory
|
||||
open Matrix
|
||||
open MatrixGroups
|
||||
open Complex
|
||||
open TensorProduct
|
||||
open IndexNotation
|
||||
open CategoryTheory
|
||||
|
||||
|
||||
noncomputable section
|
||||
|
||||
def complexLorentzTensor : TensorStruct where
|
||||
C := Fermion.Color
|
||||
G := SL(2, ℂ)
|
||||
G_group := inferInstance
|
||||
k := ℂ
|
||||
k_commRing := inferInstance
|
||||
F := Fermion.colorFunMon
|
||||
τ := Fermion.τ
|
||||
evalNo := Fermion.evalNo
|
||||
|
||||
end
|
|
@ -13,7 +13,7 @@ import HepLean.SpaceTime.WeylFermion.Basic
|
|||
import HepLean.SpaceTime.LorentzVector.Complex
|
||||
/-!
|
||||
|
||||
## Over category.
|
||||
## Over color category.
|
||||
|
||||
-/
|
||||
|
||||
|
@ -65,6 +65,16 @@ lemma toEquiv_comp_inv_apply (m : f ⟶ g) (i : g.left) :
|
|||
f.hom ((OverColor.Hom.toEquiv m).symm i) = g.hom i := by
|
||||
simpa [toEquiv, types_comp] using congrFun m.inv.w i
|
||||
|
||||
def toIso (m : f ⟶ g) : f ≅ g := {
|
||||
hom := m,
|
||||
inv := m.symm,
|
||||
hom_inv_id := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
simp only [CategoryStruct.comp, Iso.self_symm_id, Iso.refl_hom, Over.id_left, types_id_apply]
|
||||
rfl,
|
||||
inv_hom_id := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
simp only [CategoryStruct.comp, Iso.symm_self_id, Iso.refl_hom, Over.id_left, types_id_apply]
|
||||
rfl}
|
||||
|
||||
end Hom
|
||||
|
||||
section monoidal
|
||||
|
@ -234,145 +244,6 @@ def mk (f : X → C) : OverColor C := Over.mk f
|
|||
|
||||
open MonoidalCategory
|
||||
|
||||
/-- The monoidal functor from `OverColor C` to `OverColor D` constructed from a map
|
||||
`f : C → D`. -/
|
||||
def map {C D : Type} (f : C → D) : MonoidalFunctor (OverColor C) (OverColor D) where
|
||||
toFunctor := Core.functorToCore (Core.inclusion (Over C) ⋙ (Over.map f))
|
||||
ε := Over.isoMk (Iso.refl _) (by
|
||||
ext x
|
||||
exact Empty.elim x)
|
||||
μ X Y := Over.isoMk (Iso.refl _) (by
|
||||
ext x
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl)
|
||||
μ_natural_left X Y := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
μ_natural_right X Y := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
associativity X Y Z := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl (Sum.inl x) => rfl
|
||||
| Sum.inl (Sum.inr x) => rfl
|
||||
| Sum.inr x => rfl
|
||||
left_unitality X := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
right_unitality X := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
|
||||
/-- The tensor product on `OverColor C` as a monoidal functor. -/
|
||||
def tensor (C : Type) : MonoidalFunctor (OverColor C × OverColor C) (OverColor C) where
|
||||
toFunctor := MonoidalCategory.tensor (OverColor C)
|
||||
ε := Over.isoMk (Equiv.sumEmpty Empty Empty).symm.toIso (by
|
||||
ext x
|
||||
exact Empty.elim x)
|
||||
μ X Y := Over.isoMk (Equiv.sumSumSumComm X.1.left X.2.left Y.1.left Y.2.left).toIso (by
|
||||
ext x
|
||||
match x with
|
||||
| Sum.inl (Sum.inl x) => rfl
|
||||
| Sum.inl (Sum.inr x) => rfl
|
||||
| Sum.inr (Sum.inl x) => rfl
|
||||
| Sum.inr (Sum.inr x) => rfl)
|
||||
μ_natural_left X Y := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl (Sum.inl x) => rfl
|
||||
| Sum.inl (Sum.inr x) => rfl
|
||||
| Sum.inr (Sum.inl x) => rfl
|
||||
| Sum.inr (Sum.inr x) => rfl
|
||||
μ_natural_right X Y := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl (Sum.inl x) => rfl
|
||||
| Sum.inl (Sum.inr x) => rfl
|
||||
| Sum.inr (Sum.inl x) => rfl
|
||||
| Sum.inr (Sum.inr x) => rfl
|
||||
associativity X Y Z := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl (Sum.inl (Sum.inl x)) => rfl
|
||||
| Sum.inl (Sum.inl (Sum.inr x)) => rfl
|
||||
| Sum.inl (Sum.inr (Sum.inl x)) => rfl
|
||||
| Sum.inl (Sum.inr (Sum.inr x)) => rfl
|
||||
| Sum.inr (Sum.inl x) => rfl
|
||||
| Sum.inr (Sum.inr x) => rfl
|
||||
left_unitality X := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => exact Empty.elim x
|
||||
| Sum.inr (Sum.inl x)=> rfl
|
||||
| Sum.inr (Sum.inr x)=> rfl
|
||||
right_unitality X := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl (Sum.inl x) => rfl
|
||||
| Sum.inl (Sum.inr x) => rfl
|
||||
| Sum.inr x => exact Empty.elim x
|
||||
|
||||
def diag (C : Type) : MonoidalFunctor (OverColor C) (OverColor C × OverColor C) :=
|
||||
MonoidalFunctor.diag (OverColor C)
|
||||
|
||||
|
||||
def const (C : Type) : MonoidalFunctor (OverColor C) (OverColor C) where
|
||||
toFunctor := (Functor.const (OverColor C)).obj (𝟙_ (OverColor C))
|
||||
ε := 𝟙 (𝟙_ (OverColor C))
|
||||
μ _ _:= (λ_ (𝟙_ (OverColor C))).hom
|
||||
μ_natural_left _ _ := by
|
||||
simp only [Functor.const_obj_obj, Functor.const_obj_map, MonoidalCategory.whiskerRight_id,
|
||||
Category.id_comp, Iso.hom_inv_id, Category.comp_id]
|
||||
μ_natural_right _ _ := by
|
||||
simp only [Functor.const_obj_obj, Functor.const_obj_map, MonoidalCategory.whiskerLeft_id,
|
||||
Category.id_comp, Category.comp_id]
|
||||
associativity X Y Z := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun i => by
|
||||
match i with
|
||||
| Sum.inl (Sum.inl i) => rfl
|
||||
| Sum.inl (Sum.inr i) => rfl
|
||||
| Sum.inr i => rfl
|
||||
left_unitality X := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun i => by
|
||||
match i with
|
||||
| Sum.inl i => exact Empty.elim i
|
||||
| Sum.inr i => exact Empty.elim i
|
||||
right_unitality X := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun i => by
|
||||
match i with
|
||||
| Sum.inl i => exact Empty.elim i
|
||||
| Sum.inr i => exact Empty.elim i
|
||||
|
||||
|
||||
/-!
|
||||
|
||||
## Useful equivalences.
|
||||
|
||||
-/
|
||||
|
||||
/-- The isomorphism between `c : X → C` and `c ∘ e.symm` as objects in `OverColor C` for an
|
||||
equivalence `e`. -/
|
||||
def equivToIso {c : X → C} (e : X ≃ Y) : mk c ≅ mk (c ∘ e.symm) := {
|
||||
hom := Over.isoMk e.toIso ((Iso.eq_inv_comp e.toIso).mp rfl),
|
||||
inv := (Over.isoMk e.toIso ((Iso.eq_inv_comp e.toIso).mp rfl)).symm,
|
||||
hom_inv_id := by
|
||||
apply CategoryTheory.Iso.ext
|
||||
erw [CategoryTheory.Iso.trans_hom]
|
||||
simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Iso.symm_hom, Iso.hom_inv_id]
|
||||
rfl,
|
||||
inv_hom_id := by
|
||||
apply CategoryTheory.Iso.ext
|
||||
erw [CategoryTheory.Iso.trans_hom]
|
||||
simp only [Iso.symm_hom, Iso.inv_hom_id]
|
||||
rfl}
|
||||
|
||||
/-- The equivalence between `Fin n.succ` and `Fin 1 ⊕ Fin n` extracting the
|
||||
`i`th component. -/
|
||||
def finExtractOne {n : ℕ} (i : Fin n.succ) : Fin n.succ ≃ Fin 1 ⊕ Fin n :=
|
||||
(finCongr (by omega : n.succ = i + 1 + (n - i))).trans <|
|
||||
finSumFinEquiv.symm.trans <|
|
||||
(Equiv.sumCongr (finSumFinEquiv.symm.trans (Equiv.sumComm (Fin i) (Fin 1)))
|
||||
(Equiv.refl (Fin (n-i)))).trans <|
|
||||
(Equiv.sumAssoc (Fin 1) (Fin i) (Fin (n - i))).trans <|
|
||||
Equiv.sumCongr (Equiv.refl (Fin 1)) (finSumFinEquiv.trans (finCongr (by omega)))
|
||||
|
||||
end OverColor
|
||||
|
||||
end IndexNotation
|
128
HepLean/Tensors/OverColor/Functors.lean
Normal file
128
HepLean/Tensors/OverColor/Functors.lean
Normal file
|
@ -0,0 +1,128 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.OverColor.Basic
|
||||
/-!
|
||||
|
||||
## Functors related to the OverColor category
|
||||
|
||||
-/
|
||||
namespace IndexNotation
|
||||
namespace OverColor
|
||||
open CategoryTheory
|
||||
open MonoidalCategory
|
||||
|
||||
|
||||
/-- The monoidal functor from `OverColor C` to `OverColor D` constructed from a map
|
||||
`f : C → D`. -/
|
||||
def map {C D : Type} (f : C → D) : MonoidalFunctor (OverColor C) (OverColor D) where
|
||||
toFunctor := Core.functorToCore (Core.inclusion (Over C) ⋙ (Over.map f))
|
||||
ε := Over.isoMk (Iso.refl _) (by
|
||||
ext x
|
||||
exact Empty.elim x)
|
||||
μ X Y := Over.isoMk (Iso.refl _) (by
|
||||
ext x
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl)
|
||||
μ_natural_left X Y := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
μ_natural_right X Y := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
associativity X Y Z := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl (Sum.inl x) => rfl
|
||||
| Sum.inl (Sum.inr x) => rfl
|
||||
| Sum.inr x => rfl
|
||||
left_unitality X := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
right_unitality X := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
|
||||
/-- The tensor product on `OverColor C` as a monoidal functor. -/
|
||||
def tensor (C : Type) : MonoidalFunctor (OverColor C × OverColor C) (OverColor C) where
|
||||
toFunctor := MonoidalCategory.tensor (OverColor C)
|
||||
ε := Over.isoMk (Equiv.sumEmpty Empty Empty).symm.toIso (by
|
||||
ext x
|
||||
exact Empty.elim x)
|
||||
μ X Y := Over.isoMk (Equiv.sumSumSumComm X.1.left X.2.left Y.1.left Y.2.left).toIso (by
|
||||
ext x
|
||||
match x with
|
||||
| Sum.inl (Sum.inl x) => rfl
|
||||
| Sum.inl (Sum.inr x) => rfl
|
||||
| Sum.inr (Sum.inl x) => rfl
|
||||
| Sum.inr (Sum.inr x) => rfl)
|
||||
μ_natural_left X Y := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl (Sum.inl x) => rfl
|
||||
| Sum.inl (Sum.inr x) => rfl
|
||||
| Sum.inr (Sum.inl x) => rfl
|
||||
| Sum.inr (Sum.inr x) => rfl
|
||||
μ_natural_right X Y := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl (Sum.inl x) => rfl
|
||||
| Sum.inl (Sum.inr x) => rfl
|
||||
| Sum.inr (Sum.inl x) => rfl
|
||||
| Sum.inr (Sum.inr x) => rfl
|
||||
associativity X Y Z := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl (Sum.inl (Sum.inl x)) => rfl
|
||||
| Sum.inl (Sum.inl (Sum.inr x)) => rfl
|
||||
| Sum.inl (Sum.inr (Sum.inl x)) => rfl
|
||||
| Sum.inl (Sum.inr (Sum.inr x)) => rfl
|
||||
| Sum.inr (Sum.inl x) => rfl
|
||||
| Sum.inr (Sum.inr x) => rfl
|
||||
left_unitality X := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => exact Empty.elim x
|
||||
| Sum.inr (Sum.inl x)=> rfl
|
||||
| Sum.inr (Sum.inr x)=> rfl
|
||||
right_unitality X := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl (Sum.inl x) => rfl
|
||||
| Sum.inl (Sum.inr x) => rfl
|
||||
| Sum.inr x => exact Empty.elim x
|
||||
|
||||
def diag (C : Type) : MonoidalFunctor (OverColor C) (OverColor C × OverColor C) :=
|
||||
MonoidalFunctor.diag (OverColor C)
|
||||
|
||||
def const (C : Type) : MonoidalFunctor (OverColor C) (OverColor C) where
|
||||
toFunctor := (Functor.const (OverColor C)).obj (𝟙_ (OverColor C))
|
||||
ε := 𝟙 (𝟙_ (OverColor C))
|
||||
μ _ _:= (λ_ (𝟙_ (OverColor C))).hom
|
||||
μ_natural_left _ _ := by
|
||||
simp only [Functor.const_obj_obj, Functor.const_obj_map, MonoidalCategory.whiskerRight_id,
|
||||
Category.id_comp, Iso.hom_inv_id, Category.comp_id]
|
||||
μ_natural_right _ _ := by
|
||||
simp only [Functor.const_obj_obj, Functor.const_obj_map, MonoidalCategory.whiskerLeft_id,
|
||||
Category.id_comp, Category.comp_id]
|
||||
associativity X Y Z := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun i => by
|
||||
match i with
|
||||
| Sum.inl (Sum.inl i) => rfl
|
||||
| Sum.inl (Sum.inr i) => rfl
|
||||
| Sum.inr i => rfl
|
||||
left_unitality X := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun i => by
|
||||
match i with
|
||||
| Sum.inl i => exact Empty.elim i
|
||||
| Sum.inr i => exact Empty.elim i
|
||||
right_unitality X := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun i => by
|
||||
match i with
|
||||
| Sum.inl i => exact Empty.elim i
|
||||
| Sum.inr i => exact Empty.elim i
|
||||
|
||||
def contrPair (C : Type) (τ : C → C) : MonoidalFunctor (OverColor C) (OverColor C) :=
|
||||
OverColor.diag C
|
||||
⊗⋙ (MonoidalFunctor.prod (MonoidalFunctor.id (OverColor C)) (OverColor.map τ))
|
||||
⊗⋙ OverColor.tensor C
|
||||
end OverColor
|
||||
end IndexNotation
|
163
HepLean/Tensors/OverColor/Iso.lean
Normal file
163
HepLean/Tensors/OverColor/Iso.lean
Normal file
|
@ -0,0 +1,163 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.OverColor.Functors
|
||||
/-!
|
||||
|
||||
## Isomorphisms in the OverColor category
|
||||
|
||||
-/
|
||||
namespace IndexNotation
|
||||
namespace OverColor
|
||||
open CategoryTheory
|
||||
open MonoidalCategory
|
||||
|
||||
/-!
|
||||
|
||||
## Useful equivalences.
|
||||
|
||||
-/
|
||||
|
||||
/-- The isomorphism between `c : X → C` and `c ∘ e.symm` as objects in `OverColor C` for an
|
||||
equivalence `e`. -/
|
||||
def equivToIso {c : X → C} (e : X ≃ Y) : mk c ≅ mk (c ∘ e.symm) :=
|
||||
Hom.toIso (Over.isoMk e.toIso ((Iso.eq_inv_comp e.toIso).mp rfl))
|
||||
|
||||
def mkSum (c : X ⊕ Y → C) : mk c ≅ mk (c ∘ Sum.inl) ⊗ mk (c ∘ Sum.inr) :=
|
||||
Hom.toIso (Over.isoMk (Equiv.refl _).toIso (by
|
||||
ext x
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl))
|
||||
|
||||
def mkIso {c1 c2 : X → C} (h : c1 = c2) : mk c1 ≅ mk c2 :=
|
||||
Hom.toIso (Over.isoMk (Equiv.refl _).toIso (by
|
||||
subst h
|
||||
rfl))
|
||||
|
||||
/-- The equivalence between `Fin n.succ` and `Fin 1 ⊕ Fin n` extracting the
|
||||
`i`th component. -/
|
||||
def finExtractOne {n : ℕ} (i : Fin n.succ) : Fin n.succ ≃ Fin 1 ⊕ Fin n :=
|
||||
(finCongr (by omega : n.succ = i + 1 + (n - i))).trans <|
|
||||
finSumFinEquiv.symm.trans <|
|
||||
(Equiv.sumCongr (finSumFinEquiv.symm.trans (Equiv.sumComm (Fin i) (Fin 1)))
|
||||
(Equiv.refl (Fin (n-i)))).trans <|
|
||||
(Equiv.sumAssoc (Fin 1) (Fin i) (Fin (n - i))).trans <|
|
||||
Equiv.sumCongr (Equiv.refl (Fin 1)) (finSumFinEquiv.trans (finCongr (by omega)))
|
||||
|
||||
lemma finExtractOne_symm_inr {n : ℕ} (i : Fin n.succ) :
|
||||
(finExtractOne i).symm ∘ Sum.inr = i.succAbove := by
|
||||
ext x
|
||||
simp only [Nat.succ_eq_add_one, finExtractOne, Function.comp_apply, Equiv.symm_trans_apply,
|
||||
finCongr_symm, Equiv.symm_symm, Equiv.sumCongr_symm, Equiv.refl_symm, Equiv.sumCongr_apply,
|
||||
Equiv.coe_refl, Sum.map_inr, finCongr_apply, Fin.coe_cast]
|
||||
change (finSumFinEquiv (Sum.map (⇑(finSumFinEquiv.symm.trans (Equiv.sumComm (Fin ↑i) (Fin 1))).symm) id
|
||||
((Equiv.sumAssoc (Fin 1) (Fin ↑i) (Fin (n - i))).symm (Sum.inr (finSumFinEquiv.symm (Fin.cast (finExtractOne.proof_2 i).symm x)))))).val = _
|
||||
by_cases hi : x.1 < i.1
|
||||
· have h1 : (finSumFinEquiv.symm (Fin.cast (finExtractOne.proof_2 i).symm x)) =
|
||||
Sum.inl ⟨x, hi⟩ := by
|
||||
rw [← finSumFinEquiv_symm_apply_castAdd]
|
||||
apply congrArg
|
||||
ext
|
||||
simp
|
||||
rw [h1]
|
||||
simp only [Nat.succ_eq_add_one, Equiv.sumAssoc_symm_apply_inr_inl, Sum.map_inl,
|
||||
Equiv.symm_trans_apply, Equiv.symm_symm, Equiv.sumComm_symm, Equiv.sumComm_apply,
|
||||
Sum.swap_inr, finSumFinEquiv_apply_left, Fin.castAdd_mk]
|
||||
rw [Fin.succAbove]
|
||||
split
|
||||
· rfl
|
||||
rename_i hn
|
||||
simp_all only [Nat.succ_eq_add_one, not_lt, Fin.le_def, Fin.coe_castSucc, Fin.val_succ,
|
||||
self_eq_add_right, one_ne_zero]
|
||||
omega
|
||||
· have h1 : (finSumFinEquiv.symm (Fin.cast (finExtractOne.proof_2 i).symm x)) =
|
||||
Sum.inr ⟨x - i, by omega⟩ := by
|
||||
rw [← finSumFinEquiv_symm_apply_natAdd]
|
||||
apply congrArg
|
||||
ext
|
||||
simp
|
||||
omega
|
||||
rw [h1, Fin.succAbove]
|
||||
split
|
||||
· rename_i hn
|
||||
simp_all [Fin.lt_def]
|
||||
simp only [Nat.succ_eq_add_one, Equiv.sumAssoc_symm_apply_inr_inr, Sum.map_inr, id_eq,
|
||||
finSumFinEquiv_apply_right, Fin.natAdd_mk, Fin.val_succ]
|
||||
omega
|
||||
|
||||
@[simp]
|
||||
lemma finExtractOne_symm_inr_apply {n : ℕ} (i : Fin n.succ) (x : Fin n) :
|
||||
(finExtractOne i).symm (Sum.inr x) = i.succAbove x := calc
|
||||
_ = ((finExtractOne i).symm ∘ Sum.inr) x := rfl
|
||||
_ = i.succAbove x := by rw [finExtractOne_symm_inr]
|
||||
|
||||
@[simp]
|
||||
lemma finExtractOne_symm_inl_apply {n : ℕ} (i : Fin n.succ) :
|
||||
(finExtractOne i).symm (Sum.inl 0) = i := by
|
||||
simp only [Nat.succ_eq_add_one, finExtractOne, Fin.isValue, Equiv.symm_trans_apply, finCongr_symm,
|
||||
Equiv.symm_symm, Equiv.sumCongr_symm, Equiv.refl_symm, Equiv.sumCongr_apply, Equiv.coe_refl,
|
||||
Sum.map_inl, id_eq, Equiv.sumAssoc_symm_apply_inl, Equiv.sumComm_symm, Equiv.sumComm_apply,
|
||||
Sum.swap_inl, finSumFinEquiv_apply_right, finSumFinEquiv_apply_left, finCongr_apply]
|
||||
ext
|
||||
rfl
|
||||
|
||||
def finExtractTwo {n : ℕ} (i : Fin n.succ.succ) (j : Fin n.succ) :
|
||||
Fin n.succ.succ ≃ (Fin 1 ⊕ Fin 1) ⊕ Fin n :=
|
||||
(finExtractOne i).trans <|
|
||||
(Equiv.sumCongr (Equiv.refl (Fin 1)) (finExtractOne j)).trans <|
|
||||
(Equiv.sumAssoc (Fin 1) (Fin 1) (Fin n)).symm
|
||||
|
||||
lemma finExtractTwo_symm_inr {n : ℕ} (i : Fin n.succ.succ) (j : Fin n.succ) :
|
||||
(finExtractTwo i j).symm ∘ Sum.inr = i.succAbove ∘ j.succAbove := by
|
||||
rw [finExtractTwo]
|
||||
ext1 x
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma finExtractTwo_symm_inr_apply {n : ℕ} (i : Fin n.succ.succ) (j : Fin n.succ) (x : Fin n) :
|
||||
(finExtractTwo i j).symm (Sum.inr x) = i.succAbove (j.succAbove x) := by
|
||||
rw [finExtractTwo]
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma finExtractTwo_symm_inl_inr_apply {n : ℕ} (i : Fin n.succ.succ) (j : Fin n.succ) :
|
||||
(finExtractTwo i j).symm (Sum.inl (Sum.inr 0)) = i.succAbove j := by
|
||||
rw [finExtractTwo]
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma finExtractTwo_symm_inl_inl_apply {n : ℕ} (i : Fin n.succ.succ) (j : Fin n.succ) :
|
||||
(finExtractTwo i j).symm (Sum.inl (Sum.inl 0)) = i := by
|
||||
rw [finExtractTwo]
|
||||
simp
|
||||
|
||||
def contrPairFin1Fin1 (τ : C → C) (c : Fin 1 ⊕ Fin 1 → C)
|
||||
(h : c (Sum.inr 0) = τ (c (Sum.inl 0))) :
|
||||
OverColor.mk c ≅ (contrPair C τ).obj (OverColor.mk (fun (_ : Fin 1) => c (Sum.inl 0))) :=
|
||||
Hom.toIso (Over.isoMk (Equiv.refl _).toIso (by
|
||||
ext x
|
||||
match x with
|
||||
| Sum.inl x =>
|
||||
fin_cases x
|
||||
rfl
|
||||
| Sum.inr x =>
|
||||
fin_cases x
|
||||
change _ = c (Sum.inr 0)
|
||||
rw [h]
|
||||
rfl))
|
||||
|
||||
def contrPairEquiv {n : ℕ} (τ : C → C) (c : Fin n.succ.succ → C) (i : Fin n.succ.succ)
|
||||
(j : Fin n.succ) (h : c (i.succAbove j) = τ (c i)) :
|
||||
OverColor.mk c ≅ ((contrPair C τ).obj (Over.mk (fun (_ : Fin 1) => c i))) ⊗
|
||||
(OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)) :=
|
||||
(equivToIso (finExtractTwo i j)).trans <|
|
||||
(OverColor.mkSum (c ∘ ⇑(finExtractTwo i j).symm)).trans <|
|
||||
tensorIso
|
||||
(contrPairFin1Fin1 τ ((c ∘ ⇑(finExtractTwo i j).symm) ∘ Sum.inl) (by simpa using h)) <|
|
||||
mkIso (by ext x; simp)
|
||||
|
||||
end OverColor
|
||||
end IndexNotation
|
|
@ -3,7 +3,7 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.ColorCat.Basic
|
||||
import HepLean.Tensors.OverColor.Iso
|
||||
import Mathlib.CategoryTheory.Monoidal.NaturalTransformation
|
||||
/-!
|
||||
|
||||
|
@ -34,12 +34,9 @@ structure TensorStruct where
|
|||
F : MonoidalFunctor (OverColor C) (Rep k G)
|
||||
/-- A map from `C` to `C`. An involution. -/
|
||||
τ : C → C
|
||||
/-- Contraction natural transformation. -/
|
||||
ηContr : (OverColor.diag C) ⊗⋙ (MonoidalFunctor.prod (MonoidalFunctor.id (OverColor C)) (OverColor.map τ))
|
||||
⊗⋙ OverColor.tensor C ⊗⋙ F ⟶ @constMonoFunc (OverColor C) G k
|
||||
/-- A monoidal natural isomorphism from OverColor.map τ ⊗⋙ F to F.
|
||||
This will allow us to, for example, rise and lower indices. -/
|
||||
dual : (OverColor.map τ ⊗⋙ F) ≅ F
|
||||
/-
|
||||
μContr : OverColor.contrPair C τ ⊗⋙ F ⟶ OverColor.const C ⊗⋙ F
|
||||
dual : (OverColor.map τ ⊗⋙ F) ≅ F-/
|
||||
/-- A specification of the dimension of each color in C. This will be used for explicit
|
||||
evaluation of tensors. -/
|
||||
evalNo : C → ℕ
|
||||
|
@ -67,7 +64,7 @@ inductive TensorTree (S : TensorStruct) : ∀ {n : ℕ}, (Fin n → S.C) → Typ
|
|||
(i : Fin n.succ) → (j : Fin m.succ) → TensorTree S c → TensorTree S c1 →
|
||||
TensorTree S (Sum.elim (c ∘ Fin.succAbove i) (c1 ∘ Fin.succAbove j) ∘ finSumFinEquiv.symm)
|
||||
| contr {n : ℕ} {c : Fin n.succ.succ → S.C} : (i : Fin n.succ.succ) →
|
||||
(j : Fin n.succ) → TensorTree S c → TensorTree S (c ∘ Fin.succAbove i ∘ Fin.succAbove j)
|
||||
(j : Fin n.succ) → (h : c (i.succAbove j) = S.τ (c i)) → TensorTree S c → TensorTree S (c ∘ Fin.succAbove i ∘ Fin.succAbove j)
|
||||
| jiggle {n : ℕ} {c : Fin n → S.C} : (i : Fin n) → TensorTree S c →
|
||||
TensorTree S (Function.update c i (S.τ (c i)))
|
||||
| eval {n : ℕ} {c : Fin n.succ → S.C} :
|
||||
|
@ -89,7 +86,7 @@ def size : ∀ {n : ℕ} {c : Fin n → S.C}, TensorTree S c → ℕ := fun
|
|||
| smul _ t => t.size + 1
|
||||
| prod t1 t2 => t1.size + t2.size + 1
|
||||
| mult _ _ t1 t2 => t1.size + t2.size + 1
|
||||
| contr _ _ t => t.size + 1
|
||||
| contr _ _ _ t => t.size + 1
|
||||
| jiggle _ t => t.size + 1
|
||||
| eval _ _ t => t.size + 1
|
||||
|
||||
|
|
|
@ -53,7 +53,7 @@ def dotString (m : ℕ) (nt : ℕ) : ∀ {n : ℕ} {c : Fin n → S.C}, TensorTr
|
|||
let jiggleNode := " node" ++ toString m ++ " [label=\"τ\", shape=box];\n"
|
||||
let edge1 := " node" ++ toString m ++ " -> node" ++ toString (m + 1) ++ ";\n"
|
||||
jiggleNode ++ dotString (m + 1) nt t1 ++ edge1
|
||||
| contr i j t1 =>
|
||||
| contr i j _ t1 =>
|
||||
let contrNode := " node" ++ toString m ++ " [label=\"contr " ++ toString i ++ " "
|
||||
++ toString j ++ "\", shape=box];\n"
|
||||
let edge1 := " node" ++ toString m ++ " -> node" ++ toString (m + 1) ++ ";\n"
|
||||
|
|
|
@ -192,7 +192,7 @@ def withoutContr (stx : Syntax) : TermElabM (List (TSyntax `indexExpr)) := do
|
|||
/-- For each element of `l : List (ℕ × ℕ)` applies `TensorTree.contr` to the given term. -/
|
||||
def contrSyntax (l : List (ℕ × ℕ)) (T : Term) : Term :=
|
||||
l.foldl (fun T' (x0, x1) => Syntax.mkApp (mkIdent ``TensorTree.contr)
|
||||
#[Syntax.mkNumLit (toString x1), Syntax.mkNumLit (toString x0), T']) T
|
||||
#[Syntax.mkNumLit (toString x1), Syntax.mkNumLit (toString x0), mkIdent ``rfl, T']) T
|
||||
|
||||
/-- Creates the syntax associated with a tensor node. -/
|
||||
def syntaxFull (stx : Syntax) : TermElabM Term := do
|
||||
|
@ -256,7 +256,7 @@ def withoutContr (stx : Syntax) : TermElabM (List (TSyntax `indexExpr)) := do
|
|||
/-- For each element of `l : List (ℕ × ℕ)` applies `TensorTree.contr` to the given term. -/
|
||||
def contrSyntax (l : List (ℕ × ℕ)) (T : Term) : Term :=
|
||||
l.foldl (fun T' (x0, x1) => Syntax.mkApp (mkIdent ``TensorTree.contr)
|
||||
#[Syntax.mkNumLit (toString x1), Syntax.mkNumLit (toString x0), T']) T
|
||||
#[Syntax.mkNumLit (toString x1), Syntax.mkNumLit (toString x0), mkIdent ``rfl, T']) T
|
||||
|
||||
/-- The syntax associated with a product of tensors. -/
|
||||
def prodSyntax (T1 T2 : Term) : Term :=
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue