refactor: Lint
This commit is contained in:
parent
a39aeeed8b
commit
4054665c38
3 changed files with 109 additions and 75 deletions
|
@ -33,8 +33,7 @@ open TensorProduct
|
|||
## induction principals for pi tensor products
|
||||
|
||||
-/
|
||||
lemma tensorProd_piTensorProd_ext
|
||||
{f g : ((⨂[R] i : ι1, s1 i) ⊗[R] ⨂[R] i : ι2, s2 i) →ₗ[R] M}
|
||||
lemma induction_tmul {f g : ((⨂[R] i : ι1, s1 i) ⊗[R] ⨂[R] i : ι2, s2 i) →ₗ[R] M}
|
||||
(h : ∀ p q, f (PiTensorProduct.tprod R p ⊗ₜ[R] PiTensorProduct.tprod R q)
|
||||
= g (PiTensorProduct.tprod R p ⊗ₜ[R] PiTensorProduct.tprod R q)) : f = g := by
|
||||
apply TensorProduct.ext'
|
||||
|
@ -56,8 +55,10 @@ lemma tensorProd_piTensorProd_ext
|
|||
|
||||
lemma induction_assoc
|
||||
{f g : ((⨂[R] i : ι1, s1 i) ⊗[R] (⨂[R] i : ι2, s2 i) ⊗[R] ⨂[R] i : ι3, s3 i) →ₗ[R] M}
|
||||
(h : ∀ p q m, f (PiTensorProduct.tprod R p ⊗ₜ[R] PiTensorProduct.tprod R q ⊗ₜ[R] PiTensorProduct.tprod R m)
|
||||
= g (PiTensorProduct.tprod R p ⊗ₜ[R] PiTensorProduct.tprod R q ⊗ₜ[R] PiTensorProduct.tprod R m)) : f = g := by
|
||||
(h : ∀ p q m, f (PiTensorProduct.tprod R p ⊗ₜ[R]
|
||||
PiTensorProduct.tprod R q ⊗ₜ[R] PiTensorProduct.tprod R m)
|
||||
= g (PiTensorProduct.tprod R p ⊗ₜ[R] PiTensorProduct.tprod R q
|
||||
⊗ₜ[R] PiTensorProduct.tprod R m)) : f = g := by
|
||||
apply TensorProduct.ext'
|
||||
refine fun x ↦
|
||||
PiTensorProduct.induction_on' x ?_ (by
|
||||
|
@ -65,7 +66,7 @@ lemma induction_assoc
|
|||
simp [map_add, add_tmul, hx, hy])
|
||||
intro rx fx
|
||||
intro y
|
||||
simp
|
||||
simp only [PiTensorProduct.tprodCoeff_eq_smul_tprod]
|
||||
simp only [smul_tmul, tmul_smul, LinearMapClass.map_smul]
|
||||
apply congrArg
|
||||
let f' : ((⨂[R] i : ι2, s2 i) ⊗[R] ⨂[R] i : ι3, s3 i) →ₗ[R] M := {
|
||||
|
@ -83,14 +84,15 @@ lemma induction_assoc
|
|||
change f' y = g' y
|
||||
apply congrFun
|
||||
refine DFunLike.coe_fn_eq.mpr ?H.h.h.a
|
||||
apply tensorProd_piTensorProd_ext
|
||||
apply induction_tmul
|
||||
intro p q
|
||||
exact h fx p q
|
||||
|
||||
lemma induction_assoc'
|
||||
{f g : (((⨂[R] i : ι1, s1 i) ⊗[R] (⨂[R] i : ι2, s2 i)) ⊗[R] ⨂[R] i : ι3, s3 i) →ₗ[R] M}
|
||||
(h : ∀ p q m, f ((PiTensorProduct.tprod R p ⊗ₜ[R] PiTensorProduct.tprod R q) ⊗ₜ[R] PiTensorProduct.tprod R m)
|
||||
= g ((PiTensorProduct.tprod R p ⊗ₜ[R] PiTensorProduct.tprod R q) ⊗ₜ[R] PiTensorProduct.tprod R m)) : f = g := by
|
||||
(h : ∀ p q m, f ((PiTensorProduct.tprod R p ⊗ₜ[R] PiTensorProduct.tprod R q) ⊗ₜ[R]
|
||||
PiTensorProduct.tprod R m) = g ((PiTensorProduct.tprod R p ⊗ₜ[R] PiTensorProduct.tprod R q)
|
||||
⊗ₜ[R] PiTensorProduct.tprod R m)) : f = g := by
|
||||
apply TensorProduct.ext'
|
||||
intro x
|
||||
refine fun y ↦
|
||||
|
@ -98,7 +100,7 @@ lemma induction_assoc'
|
|||
intro a b hy hx
|
||||
simp [map_add, add_tmul, tmul_add, hy, hx])
|
||||
intro ry fy
|
||||
simp
|
||||
simp only [PiTensorProduct.tprodCoeff_eq_smul_tprod, tmul_smul, map_smul]
|
||||
apply congrArg
|
||||
let f' : ((⨂[R] i : ι1, s1 i) ⊗[R] ⨂[R] i : ι2, s2 i) →ₗ[R] M := {
|
||||
toFun := fun y => f (y ⊗ₜ[R] PiTensorProduct.tprod R fy),
|
||||
|
@ -115,13 +117,14 @@ lemma induction_assoc'
|
|||
change f' x = g' x
|
||||
apply congrFun
|
||||
refine DFunLike.coe_fn_eq.mpr ?H.h.h.a
|
||||
apply tensorProd_piTensorProd_ext
|
||||
apply induction_tmul
|
||||
intro p q
|
||||
exact h p q fy
|
||||
|
||||
lemma induction_tmul_mod
|
||||
{f g : ((⨂[R] i : ι1, s1 i) ⊗[R] N) →ₗ[R] M}
|
||||
(h : ∀ p m, f (PiTensorProduct.tprod R p ⊗ₜ[R] m) = g (PiTensorProduct.tprod R p ⊗ₜ[R] m)) : f = g := by
|
||||
(h : ∀ p m, f (PiTensorProduct.tprod R p ⊗ₜ[R] m) = g (PiTensorProduct.tprod R p ⊗ₜ[R] m)) :
|
||||
f = g := by
|
||||
apply TensorProduct.ext'
|
||||
refine fun y ↦
|
||||
PiTensorProduct.induction_on' y ?_ (by
|
||||
|
@ -135,7 +138,8 @@ lemma induction_tmul_mod
|
|||
|
||||
lemma induction_mod_tmul
|
||||
{f g : (N ⊗[R] ⨂[R] i : ι1, s1 i) →ₗ[R] M}
|
||||
(h : ∀ m p, f (m ⊗ₜ[R] PiTensorProduct.tprod R p) = g (m ⊗ₜ[R] PiTensorProduct.tprod R p)) : f = g := by
|
||||
(h : ∀ m p, f (m ⊗ₜ[R] PiTensorProduct.tprod R p) = g (m ⊗ₜ[R] PiTensorProduct.tprod R p)) :
|
||||
f = g := by
|
||||
apply TensorProduct.ext'
|
||||
intro x
|
||||
refine fun y ↦
|
||||
|
@ -162,15 +166,20 @@ instance : (i : ι1 ⊕ ι2) → Module R ((fun i => Sum.elim s1 s2 i) i) := fun
|
|||
| Sum.inr i => inst2' i
|
||||
|
||||
|
||||
/-- Takes a map `(i : ι1 ⊕ ι2) → Sum.elim s1 s2 i` to the underlying map `(i : ι1) → s1 i `. -/
|
||||
private def pureInl (f : (i : ι1 ⊕ ι2) → Sum.elim s1 s2 i) : (i : ι1) → s1 i :=
|
||||
fun i => f (Sum.inl i)
|
||||
|
||||
/-- Takes a map `(i : ι1 ⊕ ι2) → Sum.elim s1 s2 i` to the underlying map `(i : ι2) → s2 i `. -/
|
||||
private def pureInr (f : (i : ι1 ⊕ ι2) → Sum.elim s1 s2 i) : (i : ι2) → s2 i :=
|
||||
fun i => f (Sum.inr i)
|
||||
|
||||
section
|
||||
variable [DecidableEq (ι1 ⊕ ι2)] [DecidableEq ι1] [DecidableEq ι2]
|
||||
lemma pureInl_update_left (f : (i : ι1 ⊕ ι2) → Sum.elim s1 s2 i) (x : ι1)
|
||||
|
||||
variable [DecidableEq (ι1 ⊕ ι2)]
|
||||
omit inst1 inst2
|
||||
|
||||
lemma pureInl_update_left [DecidableEq ι1] (f : (i : ι1 ⊕ ι2) → Sum.elim s1 s2 i) (x : ι1)
|
||||
(v1 : s1 x) : pureInl (Function.update f (Sum.inl x) v1) =
|
||||
Function.update (pureInl f) x v1 := by
|
||||
funext y
|
||||
|
@ -187,7 +196,7 @@ lemma pureInr_update_left (f : (i : ι1 ⊕ ι2) → Sum.elim s1 s2 i) (x : ι1)
|
|||
funext y
|
||||
simp [pureInr, Function.update, Sum.inl.injEq, Sum.elim_inl]
|
||||
|
||||
lemma pureInr_update_right (f : (i : ι1 ⊕ ι2) → Sum.elim s1 s2 i) (x : ι2)
|
||||
lemma pureInr_update_right [DecidableEq ι2] (f : (i : ι1 ⊕ ι2) → Sum.elim s1 s2 i) (x : ι2)
|
||||
(v2 : s2 x) : pureInr (Function.update f (Sum.inr x) v2) =
|
||||
Function.update (pureInr f) x v2 := by
|
||||
funext y
|
||||
|
@ -205,7 +214,11 @@ lemma pureInl_update_right (f : (i : ι1 ⊕ ι2) → Sum.elim s1 s2 i) (x : ι2
|
|||
simp [pureInl, Function.update, Sum.inr.injEq, Sum.elim_inr]
|
||||
|
||||
end
|
||||
def domCoprod : MultilinearMap R (Sum.elim s1 s2) ((⨂[R] i : ι1, s1 i) ⊗[R] ⨂[R] i : ι2, s2 i) where
|
||||
|
||||
/-- The multilinear map from `(Sum.elim s1 s2)` to `((⨂[R] i : ι1, s1 i) ⊗[R] ⨂[R] i : ι2, s2 i)`
|
||||
defined by splitting elements of `(Sum.elim s1 s2)` into two parts. -/
|
||||
def domCoprod :
|
||||
MultilinearMap R (Sum.elim s1 s2) ((⨂[R] i : ι1, s1 i) ⊗[R] ⨂[R] i : ι2, s2 i) where
|
||||
toFun f := (PiTensorProduct.tprod R (pureInl f)) ⊗ₜ
|
||||
(PiTensorProduct.tprod R (pureInr f))
|
||||
map_add' f xy v1 v2 := by
|
||||
|
@ -235,10 +248,12 @@ def domCoprod : MultilinearMap R (Sum.elim s1 s2) ((⨂[R] i : ι1, s1 i) ⊗[R]
|
|||
simp only [Sum.elim_inr, pureInl_update_right, pureInr_update_right, MultilinearMap.map_smul,
|
||||
tmul_smul]
|
||||
|
||||
/-- Expand `PiTensorProduct` on sums into a `TensorProduct` of two factors. -/
|
||||
def tmulSymm : (⨂[R] i : ι1 ⊕ ι2, (Sum.elim s1 s2) i) →ₗ[R]
|
||||
((⨂[R] i : ι1, s1 i) ⊗[R] ⨂[R] i : ι2, s2 i) := PiTensorProduct.lift domCoprod
|
||||
|
||||
|
||||
/-- Produces a map `(i : ι1 ⊕ ι2) → Sum.elim s1 s2 i` from a map `(i : ι1) → s1 i` and a
|
||||
map `q : (i : ι2) → s2 i`. -/
|
||||
def elimPureTensor (p : (i : ι1) → s1 i) (q : (i : ι2) → s2 i) : (i : ι1 ⊕ ι2) → Sum.elim s1 s2 i :=
|
||||
fun x =>
|
||||
match x with
|
||||
|
@ -248,6 +263,7 @@ def elimPureTensor (p : (i : ι1) → s1 i) (q : (i : ι2) → s2 i) : (i : ι1
|
|||
section
|
||||
|
||||
variable [DecidableEq ι1] [DecidableEq ι2]
|
||||
omit inst1 inst2
|
||||
|
||||
lemma elimPureTensor_update_right (p : (i : ι1) → s1 i) (q : (i : ι2) → s2 i)
|
||||
(y : ι2) (r : s2 y) : elimPureTensor p (Function.update q y r) =
|
||||
|
@ -286,6 +302,8 @@ lemma elimPureTensor_update_left (p : (i : ι1) → s1 i) (q : (i : ι2) → s2
|
|||
|
||||
end
|
||||
|
||||
/-- The multilinear map valued in multilinear maps defined by combining
|
||||
`(i : ι1) → s1 i` and `q : (i : ι2) → s2 i` into a PiTensorProduct. -/
|
||||
def elimPureTensorMulLin : MultilinearMap R s1
|
||||
(MultilinearMap R s2 (⨂[R] i : ι1 ⊕ ι2, (Sum.elim s1 s2) i)) where
|
||||
toFun p := {
|
||||
|
@ -311,6 +329,7 @@ def elimPureTensorMulLin : MultilinearMap R s1
|
|||
intro y
|
||||
simp
|
||||
|
||||
/-- Collapse a `TensorProduct` of `PiTensorProduct` into a `PiTensorProduct`. -/
|
||||
def tmul : ((⨂[R] i : ι1, s1 i) ⊗[R] ⨂[R] i : ι2, s2 i) →ₗ[R]
|
||||
⨂[R] i : ι1 ⊕ ι2, (Sum.elim s1 s2) i := TensorProduct.lift {
|
||||
toFun := fun a ↦
|
||||
|
@ -319,6 +338,7 @@ def tmul : ((⨂[R] i : ι1, s1 i) ⊗[R] ⨂[R] i : ι2, s2 i) →ₗ[R]
|
|||
map_add' := fun a b ↦ by simp
|
||||
map_smul' := fun r a ↦ by simp}
|
||||
|
||||
/-- THe equivalence formed by combining a `TensorProduct` into a `PiTensorProduct`. -/
|
||||
def tmulEquiv : ((⨂[R] i : ι1, s1 i) ⊗[R] ⨂[R] i : ι2, s2 i) ≃ₗ[R]
|
||||
⨂[R] i : ι1 ⊕ ι2, (Sum.elim s1 s2) i :=
|
||||
LinearEquiv.ofLinear tmul tmulSymm
|
||||
|
@ -336,7 +356,7 @@ def tmulEquiv : ((⨂[R] i : ι1, s1 i) ⊗[R] ⨂[R] i : ι2, s2 i) ≃ₗ[R]
|
|||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl)
|
||||
(by
|
||||
apply tensorProd_piTensorProd_ext
|
||||
apply induction_tmul
|
||||
intro p q
|
||||
simp only [tmulSymm, domCoprod, tmul, elimPureTensorMulLin, LinearMap.coe_comp,
|
||||
Function.comp_apply, lift.tmul, LinearMap.coe_mk, AddHom.coe_mk, PiTensorProduct.lift.tprod,
|
||||
|
|
|
@ -194,35 +194,44 @@ lemma obj_ρ_empty (g : SL(2, ℂ)) : (colorFun.obj (𝟙_ (OverColor Color))).
|
|||
funext i
|
||||
exact Empty.elim i
|
||||
|
||||
/-- The unit natural transformation. -/
|
||||
/-- The unit natural isomorphism. -/
|
||||
def ε : 𝟙_ (Rep ℂ SL(2, ℂ)) ≅ colorFun.obj (𝟙_ (OverColor Color)) where
|
||||
hom := {
|
||||
hom := (PiTensorProduct.isEmptyEquiv Empty).symm.toLinearMap
|
||||
comm := fun M => by
|
||||
refine LinearMap.ext (fun x => ?_)
|
||||
simp only [colorFun_obj_V_carrier, OverColor.instMonoidalCategoryStruct_tensorUnit_left,
|
||||
OverColor.instMonoidalCategoryStruct_tensorUnit_hom, Action.instMonoidalCategory_tensorUnit_V,
|
||||
Action.tensorUnit_ρ', Functor.id_obj, Category.id_comp, LinearEquiv.coe_coe]
|
||||
OverColor.instMonoidalCategoryStruct_tensorUnit_hom,
|
||||
Action.instMonoidalCategory_tensorUnit_V, Action.tensorUnit_ρ', Functor.id_obj,
|
||||
Category.id_comp, LinearEquiv.coe_coe]
|
||||
erw [obj_ρ_empty M]
|
||||
rfl}
|
||||
inv := {
|
||||
hom := (PiTensorProduct.isEmptyEquiv Empty).toLinearMap
|
||||
comm := fun M => by
|
||||
refine LinearMap.ext (fun x => ?_)
|
||||
simp only [colorFun_obj_V_carrier, OverColor.instMonoidalCategoryStruct_tensorUnit_left,
|
||||
OverColor.instMonoidalCategoryStruct_tensorUnit_hom, Action.instMonoidalCategory_tensorUnit_V,
|
||||
Action.tensorUnit_ρ', Functor.id_obj, Category.id_comp, LinearEquiv.coe_coe]
|
||||
simp only [Action.instMonoidalCategory_tensorUnit_V, colorFun_obj_V_carrier,
|
||||
OverColor.instMonoidalCategoryStruct_tensorUnit_left,
|
||||
OverColor.instMonoidalCategoryStruct_tensorUnit_hom, Functor.id_obj, Action.tensorUnit_ρ']
|
||||
erw [obj_ρ_empty M]
|
||||
rfl}
|
||||
hom_inv_id := by
|
||||
ext1
|
||||
simp [CategoryStruct.comp]
|
||||
simp only [Action.instMonoidalCategory_tensorUnit_V, CategoryStruct.comp,
|
||||
OverColor.instMonoidalCategoryStruct_tensorUnit_hom,
|
||||
OverColor.instMonoidalCategoryStruct_tensorUnit_left, Functor.id_obj, Action.Hom.comp_hom,
|
||||
colorFun_obj_V_carrier, LinearEquiv.comp_coe, LinearEquiv.symm_trans_self,
|
||||
LinearEquiv.refl_toLinearMap, Action.id_hom]
|
||||
rfl
|
||||
inv_hom_id := by
|
||||
ext1
|
||||
simp [CategoryStruct.comp]
|
||||
simp only [CategoryStruct.comp, OverColor.instMonoidalCategoryStruct_tensorUnit_hom,
|
||||
OverColor.instMonoidalCategoryStruct_tensorUnit_left, Functor.id_obj, Action.Hom.comp_hom,
|
||||
colorFun_obj_V_carrier, Action.instMonoidalCategory_tensorUnit_V, LinearEquiv.comp_coe,
|
||||
LinearEquiv.self_trans_symm, LinearEquiv.refl_toLinearMap, Action.id_hom]
|
||||
rfl
|
||||
|
||||
/-- An auxillary equivalence, and trivial, of modules needed to define `μModEquiv`. -/
|
||||
def colorToRepSumEquiv {X Y : OverColor Color} (i : X.left ⊕ Y.left) :
|
||||
Sum.elim (fun i => colorToRep (X.hom i)) (fun i => colorToRep (Y.hom i)) i ≃ₗ[ℂ]
|
||||
colorToRep (Sum.elim X.hom Y.hom i) :=
|
||||
|
@ -230,8 +239,10 @@ def colorToRepSumEquiv {X Y : OverColor Color} (i : X.left ⊕ Y.left) :
|
|||
| Sum.inl _ => LinearEquiv.refl _ _
|
||||
| Sum.inr _ => LinearEquiv.refl _ _
|
||||
|
||||
def μModEquiv (X Y : OverColor Color) : (colorFun.obj X ⊗ colorFun.obj Y).V ≃ₗ[ℂ] colorFun.obj (X ⊗ Y) :=
|
||||
HepLean.PiTensorProduct.tmulEquiv ≪≫ₗ PiTensorProduct.congr colorToRepSumEquiv
|
||||
/-- The equivalence of modules corresonding to the tensorate. -/
|
||||
def μModEquiv (X Y : OverColor Color) :
|
||||
(colorFun.obj X ⊗ colorFun.obj Y).V ≃ₗ[ℂ] colorFun.obj (X ⊗ Y) :=
|
||||
HepLean.PiTensorProduct.tmulEquiv ≪≫ₗ PiTensorProduct.congr colorToRepSumEquiv
|
||||
|
||||
lemma μModEquiv_tmul_tprod {X Y : OverColor Color}(p : (i : X.left) → (colorToRep (X.hom i)))
|
||||
(q : (i : Y.left) → (colorToRep (Y.hom i))) :
|
||||
|
@ -245,22 +256,24 @@ lemma μModEquiv_tmul_tprod {X Y : OverColor Color}(p : (i : X.left) → (colo
|
|||
Action.FunctorCategoryEquivalence.functor_obj_obj]
|
||||
rw [LinearEquiv.trans_apply]
|
||||
erw [HepLean.PiTensorProduct.tmulEquiv_tmul_tprod]
|
||||
change (PiTensorProduct.congr colorToRepSumEquiv) ((PiTensorProduct.tprod ℂ) (HepLean.PiTensorProduct.elimPureTensor p q)) = _
|
||||
change (PiTensorProduct.congr colorToRepSumEquiv) ((PiTensorProduct.tprod ℂ)
|
||||
(HepLean.PiTensorProduct.elimPureTensor p q)) = _
|
||||
rw [PiTensorProduct.congr_tprod]
|
||||
rfl
|
||||
|
||||
/-- The natural isomorphism corresponding to the tensorate. -/
|
||||
def μ (X Y : OverColor Color) : colorFun.obj X ⊗ colorFun.obj Y ≅ colorFun.obj (X ⊗ Y) where
|
||||
hom := {
|
||||
hom := (μModEquiv X Y).toLinearMap
|
||||
comm := fun M => by
|
||||
refine HepLean.PiTensorProduct.tensorProd_piTensorProd_ext (fun p q => ?_)
|
||||
refine HepLean.PiTensorProduct.induction_tmul (fun p q => ?_)
|
||||
simp only [colorFun_obj_V_carrier, OverColor.instMonoidalCategoryStruct_tensorObj_left,
|
||||
OverColor.instMonoidalCategoryStruct_tensorObj_hom, Functor.id_obj, CategoryStruct.comp,
|
||||
Action.instMonoidalCategory_tensorObj_V, Action.tensor_ρ', LinearMap.coe_comp,
|
||||
Function.comp_apply]
|
||||
change (μModEquiv X Y) (((((colorFun.obj X).ρ M) (PiTensorProduct.tprod ℂ p)) ⊗ₜ[ℂ]
|
||||
(((colorFun.obj Y).ρ M) (PiTensorProduct.tprod ℂ q))))
|
||||
= ((colorFun.obj (X ⊗ Y)).ρ M) ((μModEquiv X Y) ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) q))
|
||||
(((colorFun.obj Y).ρ M) (PiTensorProduct.tprod ℂ q)))) = ((colorFun.obj (X ⊗ Y)).ρ M)
|
||||
((μModEquiv X Y) ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) q))
|
||||
rw [μModEquiv_tmul_tprod]
|
||||
erw [obj'_ρ_tprod, obj'_ρ_tprod, obj'_ρ_tprod]
|
||||
rw [μModEquiv_tmul_tprod]
|
||||
|
@ -278,15 +291,15 @@ def μ (X Y : OverColor Color) : colorFun.obj X ⊗ colorFun.obj Y ≅ colorFun.
|
|||
simp [CategoryStruct.comp]
|
||||
erw [LinearEquiv.eq_comp_toLinearMap_symm,LinearMap.comp_assoc ,
|
||||
LinearEquiv.toLinearMap_symm_comp_eq ]
|
||||
refine HepLean.PiTensorProduct.tensorProd_piTensorProd_ext (fun p q => ?_)
|
||||
refine HepLean.PiTensorProduct.induction_tmul (fun p q => ?_)
|
||||
simp only [colorFun_obj_V_carrier, OverColor.instMonoidalCategoryStruct_tensorObj_left,
|
||||
OverColor.instMonoidalCategoryStruct_tensorObj_hom, Functor.id_obj, CategoryStruct.comp,
|
||||
Action.instMonoidalCategory_tensorObj_V, Action.tensor_ρ', LinearMap.coe_comp,
|
||||
Function.comp_apply]
|
||||
symm
|
||||
change (μModEquiv X Y) (((((colorFun.obj X).ρ M) (PiTensorProduct.tprod ℂ p)) ⊗ₜ[ℂ]
|
||||
(((colorFun.obj Y).ρ M) (PiTensorProduct.tprod ℂ q))))
|
||||
= ((colorFun.obj (X ⊗ Y)).ρ M) ((μModEquiv X Y) ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) q))
|
||||
(((colorFun.obj Y).ρ M) (PiTensorProduct.tprod ℂ q)))) = ((colorFun.obj (X ⊗ Y)).ρ M)
|
||||
((μModEquiv X Y) ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) q))
|
||||
rw [μModEquiv_tmul_tprod]
|
||||
erw [obj'_ρ_tprod, obj'_ρ_tprod, obj'_ρ_tprod]
|
||||
rw [μModEquiv_tmul_tprod]
|
||||
|
@ -312,9 +325,6 @@ def μ (X Y : OverColor Color) : colorFun.obj X ⊗ colorFun.obj Y ≅ colorFun.
|
|||
LinearEquiv.symm_trans_self, LinearEquiv.refl_toLinearMap, Action.id_hom]
|
||||
rfl
|
||||
|
||||
|
||||
|
||||
@[simp]
|
||||
lemma μ_tmul_tprod {X Y : OverColor Color} (p : (i : X.left) → (colorToRep (X.hom i)))
|
||||
(q : (i : Y.left) → (colorToRep (Y.hom i))) :
|
||||
(μ X Y).hom.hom ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) q) =
|
||||
|
@ -326,7 +336,7 @@ lemma μ_natural_left {X Y : OverColor Color} (f : X ⟶ Y) (Z : OverColor Color
|
|||
MonoidalCategory.whiskerRight (colorFun.map f) (colorFun.obj Z) ≫ (μ Y Z).hom =
|
||||
(μ X Z).hom ≫ colorFun.map (MonoidalCategory.whiskerRight f Z) := by
|
||||
ext1
|
||||
refine HepLean.PiTensorProduct.tensorProd_piTensorProd_ext (fun p q => ?_)
|
||||
refine HepLean.PiTensorProduct.induction_tmul (fun p q => ?_)
|
||||
simp only [colorFun_obj_V_carrier, OverColor.instMonoidalCategoryStruct_tensorObj_left,
|
||||
OverColor.instMonoidalCategoryStruct_tensorObj_hom, Functor.id_obj, CategoryStruct.comp,
|
||||
Action.Hom.comp_hom, Action.instMonoidalCategory_tensorObj_V,
|
||||
|
@ -338,13 +348,13 @@ lemma μ_natural_left {X Y : OverColor Color} (f : X ⟶ Y) (Z : OverColor Color
|
|||
((PiTensorProduct.tprod ℂ) fun i => (colorToRepSumEquiv i)
|
||||
(HepLean.PiTensorProduct.elimPureTensor p q i))
|
||||
rw [colorFun.map_tprod]
|
||||
have h1 : (((colorFun.map f).hom ▷ (colorFun.obj Z).V) ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) q))
|
||||
= ((colorFun.map f).hom ((PiTensorProduct.tprod ℂ) p) ⊗ₜ[ℂ] ((PiTensorProduct.tprod ℂ) q)) := by rfl
|
||||
have h1 : (((colorFun.map f).hom ▷ (colorFun.obj Z).V) ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ]
|
||||
(PiTensorProduct.tprod ℂ) q)) = ((colorFun.map f).hom
|
||||
((PiTensorProduct.tprod ℂ) p) ⊗ₜ[ℂ] ((PiTensorProduct.tprod ℂ) q)) := by rfl
|
||||
erw [h1]
|
||||
rw [colorFun.map_tprod]
|
||||
change (μ Y Z).hom.hom
|
||||
(((PiTensorProduct.tprod ℂ) fun i => (colorToRepCongr _) (p ((OverColor.Hom.toEquiv f).symm i))) ⊗ₜ[ℂ]
|
||||
(PiTensorProduct.tprod ℂ) q) = _
|
||||
change (μ Y Z).hom.hom (((PiTensorProduct.tprod ℂ) fun i => (colorToRepCongr _)
|
||||
(p ((OverColor.Hom.toEquiv f).symm i))) ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) q) = _
|
||||
rw [μ_tmul_tprod]
|
||||
apply congrArg
|
||||
funext i
|
||||
|
@ -356,23 +366,25 @@ lemma μ_natural_right {X Y : OverColor Color} (X' : OverColor Color) (f : X ⟶
|
|||
MonoidalCategory.whiskerLeft (colorFun.obj X') (colorFun.map f) ≫ (μ X' Y).hom =
|
||||
(μ X' X).hom ≫ colorFun.map (MonoidalCategory.whiskerLeft X' f) := by
|
||||
ext1
|
||||
refine HepLean.PiTensorProduct.tensorProd_piTensorProd_ext (fun p q => ?_)
|
||||
refine HepLean.PiTensorProduct.induction_tmul (fun p q => ?_)
|
||||
simp only [colorFun_obj_V_carrier, OverColor.instMonoidalCategoryStruct_tensorObj_left,
|
||||
OverColor.instMonoidalCategoryStruct_tensorObj_hom, Functor.id_obj, CategoryStruct.comp,
|
||||
Action.Hom.comp_hom, Action.instMonoidalCategory_tensorObj_V,
|
||||
Action.instMonoidalCategory_whiskerLeft_hom, LinearMap.coe_comp, Function.comp_apply]
|
||||
change _ = (colorFun.map (X' ◁ f)).hom ((μ X' X).hom.hom ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) q))
|
||||
change _ = (colorFun.map (X' ◁ f)).hom ((μ X' X).hom.hom
|
||||
((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) q))
|
||||
rw [μ_tmul_tprod]
|
||||
change _ = (colorFun.map (X' ◁ f)).hom
|
||||
((PiTensorProduct.tprod ℂ) fun i => (colorToRepSumEquiv i) (HepLean.PiTensorProduct.elimPureTensor p q i))
|
||||
change _ = (colorFun.map (X' ◁ f)).hom ((PiTensorProduct.tprod ℂ) fun i =>
|
||||
(colorToRepSumEquiv i) (HepLean.PiTensorProduct.elimPureTensor p q i))
|
||||
rw [map_tprod]
|
||||
have h1 : (((colorFun.obj X').V ◁ (colorFun.map f).hom) ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) q))
|
||||
= ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] (colorFun.map f).hom ((PiTensorProduct.tprod ℂ) q)) := by rfl
|
||||
have h1 : (((colorFun.obj X').V ◁ (colorFun.map f).hom)
|
||||
((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) q))
|
||||
= ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] (colorFun.map f).hom ((PiTensorProduct.tprod ℂ) q)) := by
|
||||
rfl
|
||||
erw [h1]
|
||||
rw [map_tprod]
|
||||
change (μ X' Y).hom.hom
|
||||
((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ]
|
||||
(PiTensorProduct.tprod ℂ) fun i => (colorToRepCongr _) (q ((OverColor.Hom.toEquiv f).symm i))) = _
|
||||
change (μ X' Y).hom.hom ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) fun i =>
|
||||
(colorToRepCongr _) (q ((OverColor.Hom.toEquiv f).symm i))) = _
|
||||
rw [μ_tmul_tprod]
|
||||
apply congrArg
|
||||
funext i
|
||||
|
@ -393,17 +405,16 @@ lemma associativity (X Y Z : OverColor Color) :
|
|||
Action.instMonoidalCategory_whiskerRight_hom, LinearMap.coe_comp, Function.comp_apply,
|
||||
Action.instMonoidalCategory_whiskerLeft_hom, Action.instMonoidalCategory_associator_hom_hom]
|
||||
change (colorFun.map (α_ X Y Z).hom).hom ((μ (X ⊗ Y) Z).hom.hom
|
||||
((((μ X Y).hom.hom ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) q)) ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) m))) =
|
||||
(μ X (Y ⊗ Z)).hom.hom
|
||||
(( ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] ((μ Y Z).hom.hom ((PiTensorProduct.tprod ℂ) q ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) m)))))
|
||||
((((μ X Y).hom.hom ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ]
|
||||
(PiTensorProduct.tprod ℂ) q)) ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) m))) =
|
||||
(μ X (Y ⊗ Z)).hom.hom ((((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] ((μ Y Z).hom.hom
|
||||
((PiTensorProduct.tprod ℂ) q ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) m)))))
|
||||
rw [μ_tmul_tprod, μ_tmul_tprod]
|
||||
change (colorFun.map (α_ X Y Z).hom).hom
|
||||
((μ (X ⊗ Y) Z).hom.hom
|
||||
(((PiTensorProduct.tprod ℂ) fun i => (colorToRepSumEquiv i) (HepLean.PiTensorProduct.elimPureTensor p q i)) ⊗ₜ[ℂ]
|
||||
(PiTensorProduct.tprod ℂ) m)) =
|
||||
(μ X (Y ⊗ Z)).hom.hom
|
||||
((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ]
|
||||
(PiTensorProduct.tprod ℂ) fun i => (colorToRepSumEquiv i) (HepLean.PiTensorProduct.elimPureTensor q m i))
|
||||
change (colorFun.map (α_ X Y Z).hom).hom ((μ (X ⊗ Y) Z).hom.hom
|
||||
(((PiTensorProduct.tprod ℂ) fun i => (colorToRepSumEquiv i)
|
||||
(HepLean.PiTensorProduct.elimPureTensor p q i)) ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) m)) =
|
||||
(μ X (Y ⊗ Z)).hom.hom ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) fun i =>
|
||||
(colorToRepSumEquiv i) (HepLean.PiTensorProduct.elimPureTensor q m i))
|
||||
rw [μ_tmul_tprod, μ_tmul_tprod]
|
||||
erw [map_tprod]
|
||||
apply congrArg
|
||||
|
@ -426,14 +437,15 @@ lemma left_unitality (X : OverColor Color) : (leftUnitor (colorFun.obj X)).hom =
|
|||
OverColor.instMonoidalCategoryStruct_tensorUnit_left,
|
||||
OverColor.instMonoidalCategoryStruct_tensorObj_hom,
|
||||
Action.instMonoidalCategory_whiskerRight_hom, LinearMap.coe_comp, Function.comp_apply]
|
||||
change TensorProduct.lid ℂ (colorFun.obj X) (x ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) q) = (colorFun.map (λ_ X).hom).hom
|
||||
((μ (𝟙_ (OverColor Color)) X).hom.hom ((((PiTensorProduct.isEmptyEquiv Empty).symm x) ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) q)))
|
||||
change TensorProduct.lid ℂ (colorFun.obj X) (x ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) q) =
|
||||
(colorFun.map (λ_ X).hom).hom ((μ (𝟙_ (OverColor Color)) X).hom.hom
|
||||
((((PiTensorProduct.isEmptyEquiv Empty).symm x) ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) q)))
|
||||
simp [PiTensorProduct.isEmptyEquiv]
|
||||
rw [TensorProduct.smul_tmul, TensorProduct.tmul_smul]
|
||||
erw [LinearMap.map_smul, LinearMap.map_smul]
|
||||
apply congrArg
|
||||
change _ = (colorFun.map (λ_ X).hom).hom
|
||||
((μ (𝟙_ (OverColor Color)) X).hom.hom ((PiTensorProduct.tprod ℂ) _ ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) q))
|
||||
change _ = (colorFun.map (λ_ X).hom).hom ((μ (𝟙_ (OverColor Color)) X).hom.hom
|
||||
((PiTensorProduct.tprod ℂ) _ ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) q))
|
||||
rw [μ_tmul_tprod]
|
||||
erw [map_tprod]
|
||||
rfl
|
||||
|
@ -452,19 +464,21 @@ lemma right_unitality (X : OverColor Color) : (MonoidalCategory.rightUnitor (col
|
|||
OverColor.instMonoidalCategoryStruct_tensorObj_hom, Action.instMonoidalCategory_whiskerLeft_hom,
|
||||
LinearMap.coe_comp, Function.comp_apply]
|
||||
change TensorProduct.rid ℂ (colorFun.obj X) ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] x ) =
|
||||
(colorFun.map (ρ_ X).hom).hom
|
||||
((μ X (𝟙_ (OverColor Color))).hom.hom ((((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] ((PiTensorProduct.isEmptyEquiv Empty).symm x)))))
|
||||
(colorFun.map (ρ_ X).hom).hom ((μ X (𝟙_ (OverColor Color))).hom.hom
|
||||
((((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] ((PiTensorProduct.isEmptyEquiv Empty).symm x)))))
|
||||
simp [PiTensorProduct.isEmptyEquiv]
|
||||
erw [LinearMap.map_smul, LinearMap.map_smul]
|
||||
apply congrArg
|
||||
change _ = (colorFun.map (ρ_ X).hom).hom
|
||||
((μ X (𝟙_ (OverColor Color))).hom.hom ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) _))
|
||||
change _ = (colorFun.map (ρ_ X).hom).hom ((μ X (𝟙_ (OverColor Color))).hom.hom
|
||||
((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) _))
|
||||
rw [μ_tmul_tprod]
|
||||
erw [map_tprod]
|
||||
rfl
|
||||
|
||||
end colorFun
|
||||
|
||||
/-- The monoidal functor between `OverColor Color` and `Rep ℂ SL(2, ℂ)` taking a map of colors
|
||||
to the corresponding tensor product representation. -/
|
||||
def colorFunMon : MonoidalFunctor (OverColor Color) (Rep ℂ SL(2, ℂ)) where
|
||||
toFunctor := colorFun
|
||||
ε := colorFun.ε.hom
|
||||
|
@ -475,6 +489,5 @@ def colorFunMon : MonoidalFunctor (OverColor Color) (Rep ℂ SL(2, ℂ)) where
|
|||
left_unitality := colorFun.left_unitality
|
||||
right_unitality := colorFun.right_unitality
|
||||
|
||||
|
||||
end
|
||||
end Fermion
|
||||
|
|
|
@ -514,9 +514,9 @@ def elimPureTensorMulLin : MultilinearMap R (fun i => 𝓣.ColorModule (cX i))
|
|||
toFun p := {
|
||||
toFun := fun q => PiTensorProduct.tprod R (𝓣.elimPureTensor p q)
|
||||
map_add' := fun m x v1 v2 => by
|
||||
simp [Sum.elim_inl, Sum.elim_inr]
|
||||
simp only [elimPureTensor_update_right, MultilinearMap.map_add]
|
||||
map_smul' := fun m x r v => by
|
||||
simp [Sum.elim_inl, Sum.elim_inr]}
|
||||
simp only [elimPureTensor_update_right, MultilinearMap.map_smul]}
|
||||
map_add' p x v1 v2 := by
|
||||
apply MultilinearMap.ext
|
||||
intro y
|
||||
|
@ -547,7 +547,8 @@ def domCoprod : MultilinearMap R (fun x => 𝓣.ColorModule (Sum.elim cX cY x))
|
|||
MultilinearMap.map_add, ← tmul_add]
|
||||
map_smul' f xy r p := by
|
||||
match xy with
|
||||
| Sum.inl x => simp [TensorProduct.tmul_smul, TensorProduct.smul_tmul]
|
||||
| Sum.inl x => simp only [Sum.elim_inl, inlPureTensor_update_left, MultilinearMap.map_smul,
|
||||
inrPureTensor_update_left, smul_tmul, tmul_smul]
|
||||
| Sum.inr y => simp [TensorProduct.tmul_smul, TensorProduct.smul_tmul]
|
||||
|
||||
/-- The linear map combining two tensors into a single tensor
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue