doc: Edits to Wick theorem docs

This commit is contained in:
jstoobysmith 2025-02-10 10:21:57 +00:00
parent 26d2c24c83
commit 4096010e70
32 changed files with 255 additions and 134 deletions

View file

@ -25,7 +25,7 @@ open HepLean.Fin
-/
/-- Given a Wick contraction `φsΛ` for a list `φs` of `𝓕.FieldOp`,
a `𝓕.FieldOp` `φ`, an `i ≤ φs.length` and a `j` which is either `none` or
an element `φ` of `𝓕.FieldOp`, an `i ≤ φs.length` and a `j` which is either `none` or
some element of `φsΛ.uncontracted`, the new Wick contraction
`φsΛ.insertAndContract φ i j` is defined by inserting `φ` into `φs` after
the first `i`-elements and moving the values representing the contracted pairs in `φsΛ`
@ -35,6 +35,8 @@ open HepLean.Fin
In other words, `φsΛ.insertAndContract φ i j` is formed by adding `φ` to `φs` at position `i`,
and contracting `φ` with the field originally at position `j` if `j` is not none.
It is a Wick contraction of `φs.insertIdx φ i`, the list `φs` with `φ` inserted at
position `i`.
The notation `φsΛ ↩Λ φ i j` is used to denote `φsΛ.insertAndContract φ i j`. -/
def insertAndContract {φs : List 𝓕.FieldOp} (φ : 𝓕.FieldOp) (φsΛ : WickContraction φs.length)
@ -285,11 +287,11 @@ lemma insert_fin_eq_self (φ : 𝓕.FieldOp) {φs : List 𝓕.FieldOp}
rfl
/-- For a list `φs` of `𝓕.FieldOp`, a Wick contraction `φsΛ` of `φs`, an element `φ` of
`𝓕.FieldOp`, a `i ≤ φs.length` a sum over
`𝓕.FieldOp` and a `i ≤ φs.length` then a sum over
Wick contractions of `φs` with `φ` inserted at `i` is equal to the sum over Wick contractions
`φsΛ` of just `φs` and the sum over optional uncontracted elements of the `φsΛ`.
I.e. `∑ (φsΛ : WickContraction (φs.insertIdx i φ).length), f φsΛ` is equal to
In other words, `∑ (φsΛ : WickContraction (φs.insertIdx i φ).length), f φsΛ` is equal to
`∑ (φsΛ : WickContraction φs.length), ∑ (k : Option φsΛ.uncontracted), f (φsΛ ↩Λ φ i k) `.
where `(φs.insertIdx i φ)` is `φs` with `φ` inserted at position `i`. -/
lemma insertLift_sum (φ : 𝓕.FieldOp) {φs : List 𝓕.FieldOp}