doc: Edits to Wick theorem docs
This commit is contained in:
parent
26d2c24c83
commit
4096010e70
32 changed files with 255 additions and 134 deletions
|
@ -30,8 +30,9 @@ def signFinset (c : WickContraction n) (i1 i2 : Fin n) : Finset (Fin n) :=
|
|||
|
||||
/-- For a list `φs` of `𝓕.FieldOp`, and a Wick contraction `φsΛ` of `φs`,
|
||||
the complex number `φsΛ.sign` is defined to be the sign (`1` or `-1`) corresponding
|
||||
to the number of `fermionic`-`fermionic` exchanges that must done to put
|
||||
contracted pairs with `φsΛ` next to one another, starting from the contracted pair
|
||||
to the number of `fermionic`-`fermionic` exchanges that must be done to put
|
||||
contracted pairs within `φsΛ` next to one another, starting recursively
|
||||
from the contracted pair
|
||||
whose first element occurs at the left-most position. -/
|
||||
def sign (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length) : ℂ :=
|
||||
∏ (a : φsΛ.1), 𝓢(𝓕 |>ₛ φs[φsΛ.sndFieldOfContract a],
|
||||
|
|
|
@ -239,7 +239,7 @@ lemma signInsertNone_eq_filterset (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
|||
· exact hG
|
||||
|
||||
/-- For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a graded compliant Wick contraction `φsΛ` of `φs`,
|
||||
an `i ≤ φs.length` and a `φ` in `𝓕.FieldOp`, the following relation holds
|
||||
an `i ≤ φs.length`, and a `φ` in `𝓕.FieldOp`, then
|
||||
`(φsΛ ↩Λ φ i none).sign = s * φsΛ.sign`
|
||||
where `s` is the sign got by moving `φ` through the elements of `φ₀…φᵢ₋₁` which
|
||||
are contracted with some element.
|
||||
|
@ -255,7 +255,7 @@ lemma sign_insert_none (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
|||
exact hG
|
||||
|
||||
/-- For a list `φs = φ₀…φₙ` of `𝓕.FieldOp`, a graded compliant Wick contraction `φsΛ` of `φs`,
|
||||
and a `φ` in `𝓕.FieldOp`, the following relation holds `(φsΛ ↩Λ φ 0 none).sign = φsΛ.sign`.
|
||||
and a `φ` in `𝓕.FieldOp`, then `(φsΛ ↩Λ φ 0 none).sign = φsΛ.sign`.
|
||||
|
||||
This is a direct corollary of `sign_insert_none`. -/
|
||||
lemma sign_insert_none_zero (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
||||
|
|
|
@ -422,7 +422,7 @@ lemma join_sign_induction {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs
|
|||
`(join φsΛ φsucΛ).sign = φsΛ.sign * φsucΛ.sign`.
|
||||
|
||||
In `φsΛ.sign` the sign is determined by starting with the contracted pair
|
||||
whose first element occurs at the left-most position. This lemma manifests that
|
||||
whose first element occurs at the left-most position. This lemma manifests that this
|
||||
choice does not matter, and that contracted pairs can be brought together in any order. -/
|
||||
lemma join_sign {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length)
|
||||
(φsucΛ : WickContraction [φsΛ]ᵘᶜ.length) (hc : φsΛ.GradingCompliant) :
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue