Merge pull request #16 from HEPLean/SM/Higgs-field

Higgs Field
This commit is contained in:
Joseph Tooby-Smith 2024-05-06 14:45:35 -04:00 committed by GitHub
commit 4488853bf4
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 487 additions and 0 deletions

View file

@ -54,3 +54,5 @@ import HepLean.FlavorPhysics.CKMMatrix.Relations
import HepLean.FlavorPhysics.CKMMatrix.Rows
import HepLean.FlavorPhysics.CKMMatrix.StandardParameterization.Basic
import HepLean.FlavorPhysics.CKMMatrix.StandardParameterization.StandardParameters
import HepLean.StandardModel.Basic
import HepLean.StandardModel.HiggsField

View file

@ -0,0 +1,32 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import Mathlib.Data.Complex.Exponential
import Mathlib.Geometry.Manifold.VectorBundle.Basic
import Mathlib.Geometry.Manifold.VectorBundle.SmoothSection
import Mathlib.Geometry.Manifold.Instances.Real
import Mathlib.RepresentationTheory.Basic
/-!
# The Standard Model
This file defines the basic properties of the standard model in particle physics.
-/
universe v u
namespace StandardModel
open Manifold
open Matrix
open Complex
open ComplexConjugate
/-- The space-time (TODO: Change to Minkowski.) -/
abbrev spaceTime := EuclideanSpace (Fin 4)
/-- The global gauge group of the standard model. -/
abbrev guageGroup : Type := specialUnitaryGroup (Fin 3) ×
specialUnitaryGroup (Fin 2) × unitary
end StandardModel

View file

@ -0,0 +1,453 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.StandardModel.Basic
import Mathlib.Data.Complex.Exponential
import Mathlib.Tactic.Polyrith
import Mathlib.Geometry.Manifold.VectorBundle.Basic
import Mathlib.Geometry.Manifold.VectorBundle.SmoothSection
import Mathlib.Geometry.Manifold.Instances.Real
import Mathlib.RepresentationTheory.Basic
import Mathlib.Analysis.InnerProductSpace.Basic
import Mathlib.Geometry.Manifold.ContMDiff.Product
import Mathlib.Analysis.Complex.RealDeriv
import Mathlib.Analysis.Calculus.Deriv.Add
import Mathlib.Analysis.Calculus.Deriv.Pow
import Mathlib.Algebra.QuadraticDiscriminant
/-!
# The Higgs field
This file defines the basic properties for the higgs field in the standard model.
-/
universe v u
namespace StandardModel
noncomputable section
open Manifold
open Matrix
open Complex
open ComplexConjugate
/-- The complex vector space in which the Higgs field takes values. -/
abbrev higgsVec := EuclideanSpace (Fin 2)
/-- The trivial vector bundle 𝓡² × ℂ². (TODO: Make associated bundle.) -/
abbrev higgsBundle := Bundle.Trivial spaceTime higgsVec
instance : SmoothVectorBundle higgsVec higgsBundle (𝓡 4) :=
Bundle.Trivial.smoothVectorBundle higgsVec 𝓘(, spaceTime)
/-- A higgs field is a smooth section of the higgs bundle. -/
abbrev higgsField : Type := SmoothSection (𝓡 4) higgsVec higgsBundle
instance : NormedAddCommGroup (Fin 2 → ) := by
exact Pi.normedAddCommGroup
section higgsVec
/-- The continous linear map from the vector space `higgsVec` to `(Fin 2 → )` acheived by
casting vectors. -/
def higgsVecToFin2 : higgsVec →L[] (Fin 2 → ) where
toFun x := x
map_add' x y := by
simp
map_smul' a x := by
simp
lemma smooth_higgsVecToFin2 : Smooth 𝓘(, higgsVec) 𝓘(, Fin 2 → ) higgsVecToFin2 :=
ContinuousLinearMap.smooth higgsVecToFin2
/-- Given an element of `gaugeGroup` the linear automorphism of `higgsVec` it gets taken to. -/
@[simps!]
noncomputable def higgsRepMap (g : guageGroup) : higgsVec →ₗ[] higgsVec where
toFun S := (g.2.2 ^ 3) • (g.2.1.1 *ᵥ S)
map_add' S T := by
simp [Matrix.mulVec_add, smul_add]
rw [Matrix.mulVec_add, smul_add]
map_smul' a S := by
simp [Matrix.mulVec_smul]
rw [Matrix.mulVec_smul]
exact smul_comm _ _ _
/-- The representation of the SM guage group acting on `ℂ²`. -/
noncomputable def higgsRep : Representation guageGroup higgsVec where
toFun := higgsRepMap
map_mul' U V := by
apply LinearMap.ext
intro S
simp only [higgsRepMap, Prod.snd_mul, Submonoid.coe_inf, Prod.fst_mul, Submonoid.coe_mul,
LinearMap.coe_mk, AddHom.coe_mk, LinearMap.mul_apply, LinearMap.map_smul_of_tower,
mulVec_mulVec]
simp [mul_pow, smul_smul, mul_comm]
map_one' := by
apply LinearMap.ext
intro S
simp only [higgsRepMap, LinearMap.mul_apply, AddHom.coe_mk, LinearMap.coe_mk]
change 1 ^ 3 • (1 *ᵥ _) = _
rw [one_pow, Matrix.one_mulVec]
simp only [one_smul, LinearMap.one_apply]
end higgsVec
namespace higgsField
open Complex Real
/-- Given a `higgsField`, the corresponding map from `spaceTime` to `higgsVec`. -/
def toHiggsVec (φ : higgsField) : spaceTime → higgsVec := φ
lemma toHiggsVec_smooth (φ : higgsField) : Smooth 𝓘(, spaceTime) 𝓘(, higgsVec) φ.toHiggsVec := by
intro x0
have h1 := φ.contMDiff x0
rw [Bundle.contMDiffAt_section] at h1
have h2 :
(fun x => ((trivializationAt higgsVec (Bundle.Trivial spaceTime higgsVec) x0)
{ proj := x, snd := φ x }).2) = φ := by
rfl
simp only [h2] at h1
exact h1
lemma higgsVecToFin2_toHiggsVec (φ : higgsField) : higgsVecToFin2 ∘ φ.toHiggsVec = φ := by
ext x
rfl
lemma toVec_smooth (φ : higgsField) : Smooth 𝓘(, spaceTime) 𝓘(, Fin 2 → ) φ := by
rw [← φ.higgsVecToFin2_toHiggsVec]
exact Smooth.comp smooth_higgsVecToFin2 (φ.toHiggsVec_smooth)
lemma comp_smooth (φ : higgsField) :
∀ i, Smooth 𝓘(, spaceTime) 𝓘(, ) (fun (x : spaceTime) => (φ x i)) := by
rw [← smooth_pi_space]
exact φ.toVec_smooth
lemma comp_re_smooth (φ : higgsField) (i : Fin 2):
Smooth 𝓘(, spaceTime) 𝓘(, ) (reCLM ∘ (fun (x : spaceTime) => (φ x i))) :=
Smooth.comp (ContinuousLinearMap.smooth reCLM) (φ.comp_smooth i)
lemma comp_im_smooth (φ : higgsField) (i : Fin 2):
Smooth 𝓘(, spaceTime) 𝓘(, ) (imCLM ∘ (fun (x : spaceTime) => (φ x i))) :=
Smooth.comp (ContinuousLinearMap.smooth imCLM) (φ.comp_smooth i)
/-- Given a `higgsField`, the map `spaceTime → ` obtained by taking the square norm of the
higgs vector. -/
@[simp]
def normSq (φ : higgsField) : spaceTime → := fun x => ( ‖φ x‖ ^ 2)
lemma normSq_expand (φ : higgsField) :
φ.normSq = fun x => (conj (φ x 0) * (φ x 0) + conj (φ x 1) * (φ x 1) ).re := by
funext x
simp only [normSq, add_re, mul_re, conj_re, conj_im, neg_mul, sub_neg_eq_add]
rw [@norm_sq_eq_inner ]
simp
lemma normSq_smooth (φ : higgsField) : Smooth 𝓘(, spaceTime) 𝓘(, ) φ.normSq := by
rw [normSq_expand]
refine Smooth.add ?_ ?_
simp only [mul_re, conj_re, conj_im, neg_mul, sub_neg_eq_add]
refine Smooth.add ?_ ?_
refine Smooth.smul ?_ ?_
exact φ.comp_re_smooth 0
exact φ.comp_re_smooth 0
refine Smooth.smul ?_ ?_
exact φ.comp_im_smooth 0
exact φ.comp_im_smooth 0
simp only [mul_re, conj_re, conj_im, neg_mul, sub_neg_eq_add]
refine Smooth.add ?_ ?_
refine Smooth.smul ?_ ?_
exact φ.comp_re_smooth 1
exact φ.comp_re_smooth 1
refine Smooth.smul ?_ ?_
exact φ.comp_im_smooth 1
exact φ.comp_im_smooth 1
lemma normSq_nonneg (φ : higgsField) (x : spaceTime) : 0 ≤ φ.normSq x := by
simp only [normSq, ge_iff_le, norm_nonneg, pow_nonneg]
lemma normSq_zero (φ : higgsField) (x : spaceTime) : φ.normSq x = 0 ↔ φ x = 0 := by
simp only [normSq, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, pow_eq_zero_iff, norm_eq_zero]
/-- The Higgs potential of the form `- μ² * |φ|² + λ * |φ|⁴`. -/
@[simp]
def potential (φ : higgsField) (μSq lambda : ) (x : spaceTime) : :=
- μSq * φ.normSq x + lambda * φ.normSq x * φ.normSq x
lemma potential_smooth (φ : higgsField) (μSq lambda : ) :
Smooth 𝓘(, spaceTime) 𝓘(, ) (fun x => φ.potential μSq lambda x) := by
simp only [potential, normSq, neg_mul]
exact Smooth.add
(Smooth.neg (Smooth.smul smooth_const φ.normSq_smooth))
(Smooth.smul (Smooth.smul smooth_const φ.normSq_smooth) φ.normSq_smooth)
/-- A higgs field is constant if it is equal for all `x` `y` in `spaceTime`. -/
def isConst (Φ : higgsField) : Prop := ∀ x y, Φ x = Φ y
/-- Given a vector `ℂ²` the constant higgs field with value equal to that
section. -/
noncomputable def const (φ : higgsVec) : higgsField where
toFun := fun _ => φ
contMDiff_toFun := by
intro x
rw [Bundle.contMDiffAt_section]
exact smoothAt_const
lemma normSq_const (φ : higgsVec) : (const φ).normSq = fun x => (norm φ) ^ 2 := by
simp only [normSq, const]
funext x
simp
lemma potential_const (φ : higgsVec) (μSq lambda : ) :
(const φ).potential μSq lambda = fun x => - μSq * (norm φ) ^ 2 + lambda * (norm φ) ^ 4 := by
unfold potential
rw [normSq_const]
ring_nf
/-- Given a element `v : ` the `higgsField` `(0, v/√2)`. -/
def constStd (v : ) : higgsField := const ![0, v/√2]
lemma normSq_constStd (v : ) : (constStd v).normSq = fun x => v ^ 2 / 2 := by
simp only [normSq_const, constStd]
funext x
rw [@PiLp.norm_sq_eq_of_L2]
rw [Fin.sum_univ_two]
simp
/-- The higgs potential as a function of `v : ` when evaluated on a `constStd` field. -/
def potentialConstStd (μSq lambda v : ) : := - μSq /2 * v ^ 2 + lambda /4 * v ^ 4
lemma potential_constStd (v μSq lambda : ) :
(constStd v).potential μSq lambda = fun _ => potentialConstStd μSq lambda v := by
unfold potential potentialConstStd
rw [normSq_constStd]
simp only [neg_mul]
ring_nf
lemma smooth_potentialConstStd (μSq lambda : ) :
Smooth 𝓘(, ) 𝓘(, ) (fun v => potentialConstStd μSq lambda v) := by
simp only [potentialConstStd]
have h1 (v : ) : v ^ 4 = v * v * v * v := by
ring
simp [sq, h1]
refine Smooth.add ?_ ?_
exact Smooth.smul smooth_const (Smooth.smul smooth_id smooth_id)
exact Smooth.smul smooth_const
(Smooth.smul (Smooth.smul (Smooth.smul smooth_id smooth_id) smooth_id) smooth_id)
lemma deriv_potentialConstStd (μSq lambda v : ) :
deriv (fun v => potentialConstStd μSq lambda v) v = - μSq * v + lambda * v ^ 3 := by
simp only [potentialConstStd]
rw [deriv_add, deriv_mul, deriv_mul, deriv_const, deriv_const, deriv_pow, deriv_pow]
simp only [zero_mul, Nat.cast_ofNat, Nat.succ_sub_succ_eq_sub, tsub_zero, pow_one, zero_add,
neg_mul]
ring
exact differentiableAt_const _
exact differentiableAt_pow _
exact differentiableAt_const _
exact differentiableAt_pow _
exact DifferentiableAt.const_mul (differentiableAt_pow _) _
exact DifferentiableAt.const_mul (differentiableAt_pow _) _
lemma deriv_potentialConstStd_zero (μSq lambda v : ) (hLam : 0 < lambda)
(hv : deriv (fun v => potentialConstStd μSq lambda v) v = 0) : v = 0 v ^ 2 = μSq/lambda:= by
rw [deriv_potentialConstStd] at hv
ring_nf at hv
have h1 : v * (- μSq + lambda * v ^ 2) = 0 := by
ring_nf
linear_combination hv
simp at h1
cases' h1 with h1 h1
simp_all
apply Or.inr
field_simp
linear_combination h1
lemma potentialConstStd_bounded' (μSq lambda v x : ) (hLam : 0 < lambda) :
potentialConstStd μSq lambda v = x → - μSq ^ 2 / (4 * lambda) ≤ x := by
simp only [potentialConstStd]
intro h
let y := v ^2
have h1 : lambda / 4 * y * y + (- μSq / 2) * y + (-x) = 0 := by
simp [y]
linear_combination h
rw [quadratic_eq_zero_iff_discrim_eq_sq] at h1
simp [discrim] at h1
have h2 : 0 ≤ μSq ^ 2 / 2 ^ 2 + 4 * (lambda / 4) * x := by
rw [h1]
exact sq_nonneg (2 * (lambda / 4) * y + -μSq / 2)
ring_nf at h2
rw [← neg_le_iff_add_nonneg'] at h2
have h4 := (div_le_iff' hLam).mpr h2
ring_nf at h4
ring_nf
exact h4
simp only [ne_eq, div_eq_zero_iff, OfNat.ofNat_ne_zero, or_false]
exact OrderIso.mulLeft₀.proof_1 lambda hLam
lemma potentialConstStd_bounded (μSq lambda v : ) (hLam : 0 < lambda) :
- μSq ^ 2 / (4 * lambda) ≤ potentialConstStd μSq lambda v := by
apply potentialConstStd_bounded' μSq lambda v (potentialConstStd μSq lambda v) hLam
rfl
lemma potentialConstStd_IsMinOn_of_eq_bound (μSq lambda v : ) (hLam : 0 < lambda)
(hv : potentialConstStd μSq lambda v = - μSq ^ 2 / (4 * lambda)) :
IsMinOn (potentialConstStd μSq lambda) Set.univ v := by
rw [isMinOn_univ_iff]
intro x
rw [hv]
exact potentialConstStd_bounded μSq lambda x hLam
lemma potentialConstStd_vsq_of_eq_bound (μSq lambda v : ) (hLam : 0 < lambda) :
potentialConstStd μSq lambda v = - μSq ^ 2 / (4 * lambda) ↔ v ^ 2 = μSq / lambda := by
apply Iff.intro
intro h
simp [potentialConstStd] at h
field_simp at h
have h1 : (8 * lambda ^ 2) * v ^ 2 * v ^ 2 + (- 16 * μSq * lambda ) * v ^ 2
+ (8 * μSq ^ 2) = 0 := by
linear_combination h
have hd : discrim (8 * lambda ^ 2) (- 16 * μSq * lambda) (8 * μSq ^ 2) = 0 := by
simp [discrim]
ring_nf
rw [quadratic_eq_zero_iff_of_discrim_eq_zero _ hd] at h1
field_simp at h1 ⊢
ring_nf at h1
have hx : 16 * lambda ≠ 0 := by
simp [hLam]
exact OrderIso.mulLeft₀.proof_1 lambda hLam
apply mul_left_cancel₀ hx
ring_nf
rw [← h1]
ring
simp only [ne_eq, mul_eq_zero, OfNat.ofNat_ne_zero, not_false_eq_true, pow_eq_zero_iff, false_or]
exact OrderIso.mulLeft₀.proof_1 lambda hLam
intro h
simp [potentialConstStd, h]
have hv : v ^ 4 = v^2 * v^2 := by
ring
rw [hv, h]
field_simp
ring
lemma potentialConstStd_IsMinOn (μSq lambda v : ) (hLam : 0 < lambda) (hμSq : 0 ≤ μSq) :
IsMinOn (potentialConstStd μSq lambda) Set.univ v ↔ v ^ 2 = μSq / lambda := by
apply Iff.intro
intro h
have h1 := potentialConstStd_bounded μSq lambda v hLam
rw [isMinOn_univ_iff] at h
let vmin := √(μSq / lambda)
have hvmin : vmin ^ 2 = μSq / lambda := by
simp [vmin]
field_simp
have h2 := h vmin
have h3 := (potentialConstStd_vsq_of_eq_bound μSq lambda vmin hLam).mpr hvmin
rw [h3] at h2
rw [(potentialConstStd_vsq_of_eq_bound μSq lambda v hLam).mp]
exact (Real.partialOrder.le_antisymm _ _ h1 h2).symm
intro h
rw [← potentialConstStd_vsq_of_eq_bound μSq lambda v hLam] at h
exact potentialConstStd_IsMinOn_of_eq_bound μSq lambda v hLam h
lemma potentialConstStd_muSq_le_zero_nonneg (μSq lambda v : ) (hLam : 0 < lambda)
(hμSq : μSq ≤ 0) : 0 ≤ potentialConstStd μSq lambda v := by
simp [potentialConstStd]
apply add_nonneg
field_simp
refine div_nonneg ?_ (by simp)
refine neg_nonneg.mpr ?_
rw [@mul_nonpos_iff]
simp_all
apply Or.inr
exact sq_nonneg v
rw [mul_nonneg_iff]
apply Or.inl
apply And.intro
refine div_nonneg ?_ (by simp)
exact le_of_lt hLam
have hv : v ^ 4 = (v ^ 2) ^ 2 := by ring
rw [hv]
exact sq_nonneg (v ^ 2)
lemma potentialConstStd_zero_muSq_le_zero (μSq lambda v : ) (hLam : 0 < lambda)
(hμSq : μSq ≤ 0) : potentialConstStd μSq lambda v = 0 ↔ v = 0 := by
apply Iff.intro
· intro h
simp [potentialConstStd] at h
field_simp at h
have h1 : v ^ 2 * ((2 * lambda ) * v ^ 2 + (- 4 * μSq )) = 0 := by
linear_combination h
simp at h1
cases' h1 with h1 h1
exact h1
have h2 : v ^ 2 = (4 * μSq) / (2 * lambda) := by
field_simp
ring_nf
linear_combination h1
by_cases hμSqZ : μSq = 0
rw [hμSqZ] at h2
simpa using h2
have h3 : ¬ (0 ≤ 4 * μSq / (2 * lambda)) := by
rw [div_nonneg_iff]
simp only [gt_iff_lt, Nat.ofNat_pos, mul_nonneg_iff_of_pos_left]
rw [not_or]
apply And.intro
simp only [not_and, not_le]
intro hm
exact (hμSqZ (le_antisymm hμSq hm)).elim
simp only [not_and, not_le, gt_iff_lt, Nat.ofNat_pos, mul_pos_iff_of_pos_left]
intro _
simp_all only [true_or]
rw [← h2] at h3
refine (h3 ?_).elim
exact sq_nonneg v
· intro h
simp [potentialConstStd, h]
lemma potentialConstStd_IsMinOn_muSq_le_zero (μSq lambda v : ) (hLam : 0 < lambda)
(hμSq : μSq ≤ 0) :
IsMinOn (potentialConstStd μSq lambda) Set.univ v ↔ v = 0 := by
have hx := (potentialConstStd_zero_muSq_le_zero μSq lambda 0 hLam hμSq)
simp at hx
apply Iff.intro
intro h
rw [isMinOn_univ_iff] at h
have h1 := potentialConstStd_muSq_le_zero_nonneg μSq lambda v hLam hμSq
have h2 := h 0
rw [hx] at h2
exact (potentialConstStd_zero_muSq_le_zero μSq lambda v hLam hμSq).mp
(Real.partialOrder.le_antisymm _ _ h1 h2).symm
intro h
rw [h, isMinOn_univ_iff, hx]
intro x
exact potentialConstStd_muSq_le_zero_nonneg μSq lambda x hLam hμSq
lemma const_isConst (φ : Fin 2 → ) : (const φ).isConst := by
intro x _
simp [const]
lemma isConst_iff_exists_const (Φ : higgsField) : Φ.isConst ↔ ∃ φ, Φ = const φ := by
apply Iff.intro
intro h
use Φ 0
ext x y
rw [← h x 0]
rfl
intro h
intro x y
obtain ⟨φ, hφ⟩ := h
subst hφ
rfl
end higgsField
end
end StandardModel