feat: Some proof progress

This commit is contained in:
jstoobysmith 2024-10-27 17:07:45 +00:00
parent 64746e741d
commit 4521cc0e64
3 changed files with 128 additions and 5 deletions

View file

@ -29,6 +29,7 @@ variable {n n1 : } {c : Fin n.succ.succ → S.C} {c1 : Fin n1 → S.C} (q : C
## Left contractions.
-/
/-- An equivalence needed to perform contraction. For specified `n` and `n1`
this reduces to an identity. -/
def leftContrEquivSuccSucc : Fin (n.succ.succ + n1) ≃ Fin ((n + n1).succ.succ) :=
@ -114,6 +115,7 @@ lemma leftContr_map_eq : ((Sum.elim c (OverColor.mk c1).hom ∘ finSumFinEquiv.s
Sum.elim_inr]
set_option maxHeartbeats 0 in
lemma contrMap_prod :
(q.contrMap ▷ S.F.obj (OverColor.mk c1)) ≫ (S.F.μ _ ((OverColor.mk c1))) ≫
S.F.map (OverColor.equivToIso finSumFinEquiv).hom =
@ -123,10 +125,116 @@ lemma contrMap_prod :
≫ S.F.map (OverColor.mkIso (q.leftContr_map_eq)).hom := by
ext1
refine HepLean.PiTensorProduct.induction_tmul (fun p q' => ?_)
simp only [Nat.succ_eq_add_one, Functor.id_obj, mk_hom, CategoryStruct.comp, Action.Hom.comp_hom,
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_whiskerRight_hom,
LinearMap.coe_comp, Function.comp_apply, Functor.const_obj_obj, Equiv.toFun_as_coe]
sorry
change (S.F.map (equivToIso finSumFinEquiv).hom).hom
((S.F.μ (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove)) (OverColor.mk c1)).hom
((q.contrMap.hom (PiTensorProduct.tprod S.k p)) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) q'))
= (S.F.map (mkIso _).hom).hom
(q.leftContr.contrMap.hom
((S.F.map (equivToIso (@leftContrEquivSuccSucc n n1)).hom).hom
((S.F.map (equivToIso finSumFinEquiv).hom).hom
((S.F.μ (OverColor.mk c) (OverColor.mk c1)).hom
((PiTensorProduct.tprod S.k) p ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) q')))))
conv_lhs => rw [contrMap, TensorSpecies.contrMap_tprod]
simp only [TensorSpecies.F_def]
conv_rhs => rw [lift.obj_μ_tprod_tmul]
simp only [TensorProduct.smul_tmul, TensorProduct.tmul_smul, map_smul]
conv_lhs => rw [lift.obj_μ_tprod_tmul]
change _ = ((lift.obj S.FDiscrete).map (mkIso _).hom).hom
(q.leftContr.contrMap.hom
(((lift.obj S.FDiscrete).map (equivToIso leftContrEquivSuccSucc).hom).hom
(((lift.obj S.FDiscrete).map (equivToIso finSumFinEquiv).hom).hom
((PiTensorProduct.tprod S.k) _))))
conv_rhs => rw [lift.map_tprod]
change _ = ((lift.obj S.FDiscrete).map (mkIso _).hom).hom
(q.leftContr.contrMap.hom
(((lift.obj S.FDiscrete).map (equivToIso leftContrEquivSuccSucc).hom).hom
(
((PiTensorProduct.tprod S.k) _))))
conv_rhs => rw [lift.map_tprod]
change _ = ((lift.obj S.FDiscrete).map (mkIso _).hom).hom
(q.leftContr.contrMap.hom
((PiTensorProduct.tprod S.k) _))
conv_rhs => rw [contrMap, TensorSpecies.contrMap_tprod]
simp only [TensorProduct.smul_tmul, TensorProduct.tmul_smul, map_smul]
congr 1
/- The contraction. -/
· apply congrArg
simp only [Monoidal.tensorUnit_obj, Action.instMonoidalCategory_tensorUnit_V,
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj, Functor.comp_obj,
Discrete.functor_obj_eq_as, Function.comp_apply, Nat.succ_eq_add_one, mk_hom,
Equiv.toFun_as_coe, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
Iso.refl_hom, Action.id_hom, Iso.refl_inv, Functor.id_obj,
instMonoidalCategoryStruct_tensorObj_hom, LinearEquiv.ofLinear_apply]
have h1' : ∀ {a a' b c b' c'} (haa' : a = a')
(_ : b = (S.FDiscrete.map (Discrete.eqToHom (by rw [haa']))).hom b')
(_ : c = (S.FDiscrete.map (Discrete.eqToHom (by rw [haa']))).hom c'),
(S.contr.app a).hom (b ⊗ₜ[S.k] c) = (S.contr.app a').hom (b' ⊗ₜ[S.k] c') := by
intro a a' b c b' c' haa' hbc hcc
subst haa'
simp_all
refine h1' ?_ ?_ ?_
· simp only [leftContr, Nat.succ_eq_add_one, Equiv.toFun_as_coe, leftContrI,
Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl]
· erw [ModuleCat.id_apply, ModuleCat.id_apply, ModuleCat.id_apply, ModuleCat.id_apply]
simp only [AddHom.toFun_eq_coe, LinearMap.coe_toAddHom, equivToIso_homToEquiv,
LinearEquiv.coe_coe]
have h1' {a : Fin n.succ.succ} {b : Fin (n + 1 + 1) ⊕ Fin n1}
(h : b = Sum.inl a) : p a = (S.FDiscrete.map (Discrete.eqToHom (by rw [h]; simp ))).hom
((lift.discreteSumEquiv S.FDiscrete b)
(HepLean.PiTensorProduct.elimPureTensor p q' b)) := by
subst h
simp only [Nat.succ_eq_add_one, mk_hom, instMonoidalCategoryStruct_tensorObj_hom,
Sum.elim_inl, eqToHom_refl, Discrete.functor_map_id, Action.id_hom, Functor.id_obj,
ModuleCat.id_apply]
rfl
apply h1'
exact Eq.symm ((fun f => (Equiv.apply_eq_iff_eq_symm_apply f).mp) finSumFinEquiv rfl)
· erw [ModuleCat.id_apply, ModuleCat.id_apply, ModuleCat.id_apply, ModuleCat.id_apply,
ModuleCat.id_apply]
simp only [Discrete.functor_obj_eq_as, Function.comp_apply, AddHom.toFun_eq_coe,
LinearMap.coe_toAddHom, equivToIso_homToEquiv]
change _ = (S.FDiscrete.map (Discrete.eqToHom _) ≫ S.FDiscrete.map (Discrete.eqToHom _)).hom _
rw [← S.FDiscrete.map_comp]
simp
/- a = q.i.succAbove q.j, d = q.i, b = (finSumFinEquiv.symm (leftContrEquivSuccSucc.symm (q.leftContr.i.succAbove q.leftContr.j))
h : c (q.i.succAbove q.j) = S.τ (c q.i) -/
have h1 {a d : Fin n.succ.succ} {b : Fin (n + 1 + 1) ⊕ Fin n1}
(h1' : b = Sum.inl a) (h2' : c a = S.τ (c d)) :
(S.FDiscrete.map (Discrete.eqToHom h2')).hom (p a) =
(S.FDiscrete.map (eqToHom (by subst h1'; simpa using h2'))).hom
((lift.discreteSumEquiv S.FDiscrete b)
(HepLean.PiTensorProduct.elimPureTensor p q' b)) := by
subst h1'
rfl
apply h1
erw [leftContrJ_succAbove_leftContrI]
simp only [Nat.succ_eq_add_one, Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_castAdd]
/- The tensor. -/
· rw [lift.map_tprod]
conv_lhs => erw [lift.map_tprod]
apply congrArg
funext k
simp [lift.discreteFunctorMapEqIso]
repeat erw [ModuleCat.id_apply]
simp
change _ = (S.FDiscrete.map (eqToHom _)).hom
((lift.discreteSumEquiv S.FDiscrete
(finSumFinEquiv.symm
(leftContrEquivSuccSucc.symm
(q.leftContr.i.succAbove
(q.leftContr.j.succAbove k)))))
(HepLean.PiTensorProduct.elimPureTensor p q'
(finSumFinEquiv.symm
(leftContrEquivSuccSucc.symm
(q.leftContr.i.succAbove
(q.leftContr.j.succAbove k))))))
sorry
/- l = k, l' = (finSumFinEquiv.symm (leftContrEquivSuccSucc.symm (q.leftContr.i.succAbove (q.leftContr.j.succAbove k)))),
-/
/-!