feat: Important fix to ContrContr
This commit is contained in:
parent
83ff8f5358
commit
4756466001
7 changed files with 184 additions and 2 deletions
|
@ -209,5 +209,17 @@ lemma basis_contr (c : complexLorentzTensor.C) (i : Fin (complexLorentzTensor.re
|
|||
| Color.up => Lorentz.contrCoContraction_basis _ _
|
||||
| Color.down => Lorentz.coContrContraction_basis _ _
|
||||
|
||||
instance {n : ℕ} {c : Fin n → complexLorentzTensor.C} :
|
||||
DecidableEq (OverColor.mk c).left := instDecidableEqFin n
|
||||
|
||||
instance {n : ℕ} {c : Fin n → complexLorentzTensor.C} :
|
||||
Fintype (OverColor.mk c).left := Fin.fintype n
|
||||
|
||||
instance {n m : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||
{c1 : Fin m → complexLorentzTensor.C} (σ σ' : OverColor.mk c ⟶ OverColor.mk c1) :
|
||||
Decidable (σ = σ') :=
|
||||
decidable_of_iff _ (OverColor.Hom.ext_iff σ σ')
|
||||
|
||||
|
||||
end complexLorentzTensor
|
||||
end
|
||||
|
|
|
@ -87,5 +87,57 @@ lemma tensorNode_coBispinorDown (p : complexCo) :
|
|||
⊗ coBispinorUp p | α β}ᵀ.tensor := by
|
||||
rw [coBispinorDown, tensorNode_tensor]
|
||||
|
||||
/-!
|
||||
|
||||
## Basic equalities.
|
||||
|
||||
-/
|
||||
|
||||
lemma contrBispinorDown_expand (p : complexContr) :
|
||||
{contrBispinorDown p | α β}ᵀ.tensor = {Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β' ⊗
|
||||
(pauliCo | μ α β ⊗ p | μ)}ᵀ.tensor := by
|
||||
rw [tensorNode_contrBispinorDown p]
|
||||
rw [contr_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_snd <| tensorNode_contrBispinorUp p]
|
||||
|
||||
set_option maxRecDepth 5000 in
|
||||
lemma contrBispinorDown_eq_pauliCoDown_contr (p : complexContr) :
|
||||
{contrBispinorDown p | α β = pauliCoDown | μ α β ⊗ p | μ}ᵀ := by
|
||||
conv =>
|
||||
rhs
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_fst <| pauliCoDown_eq_metric_mul_pauliCo]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| prod_perm_left _ _ _ _]
|
||||
rw [perm_tensor_eq <| perm_contr_congr 2 2]
|
||||
rw [perm_perm]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_prod _ _ _]
|
||||
rw [perm_tensor_eq <| perm_contr_congr 2 2]
|
||||
rw [perm_perm]
|
||||
apply (perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| perm_eq_id _ rfl _).trans
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_prod _ _ _]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| perm_contr_congr 1 3]
|
||||
rw [perm_tensor_eq <| perm_contr_congr 2 2]
|
||||
rw [perm_perm]
|
||||
erw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| perm_eq_id _ rfl _]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| prod_assoc' _ _ _ _ _ _]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| perm_contr_congr 0 4]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| perm_contr_congr 1 3]
|
||||
rw [perm_tensor_eq <| perm_contr_congr 2 2]
|
||||
rw [perm_perm]
|
||||
conv =>
|
||||
lhs
|
||||
rw [contrBispinorDown_expand p]
|
||||
rw [contr_tensor_eq <| contr_tensor_eq <| prod_contr _ _ _]
|
||||
rw [contr_tensor_eq <| perm_contr_congr 0 3]
|
||||
rw [perm_contr_congr 1 2]
|
||||
apply (perm_tensor_eq <| contr_tensor_eq <| contr_contr _ _ _).trans
|
||||
rw [perm_tensor_eq <| perm_contr _ _]
|
||||
rw [perm_perm]
|
||||
rw [perm_tensor_eq <| contr_contr _ _ _]
|
||||
rw [perm_perm]
|
||||
apply perm_congr _ rfl
|
||||
decide
|
||||
|
||||
|
||||
|
||||
|
||||
end complexLorentzTensor
|
||||
end
|
||||
|
|
|
@ -4,7 +4,11 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.Tree.NodeIdentities.ProdAssoc
|
||||
import HepLean.Tensors.Tree.NodeIdentities.ProdComm
|
||||
import HepLean.Tensors.Tree.NodeIdentities.ProdContr
|
||||
import HepLean.Tensors.Tree.NodeIdentities.ContrContr
|
||||
import HepLean.Tensors.Tree.NodeIdentities.ContrSwap
|
||||
import HepLean.Tensors.Tree.NodeIdentities.PermContr
|
||||
import HepLean.Tensors.Tree.NodeIdentities.Congr
|
||||
/-!
|
||||
|
||||
|
@ -75,4 +79,61 @@ lemma tensorNode_pauliContrDown : {pauliContrDown | μ α β}ᵀ.tensor =
|
|||
Fermion.altRightMetric | β β'}ᵀ.tensor := by
|
||||
rfl
|
||||
|
||||
/-!
|
||||
|
||||
## Basic equalities
|
||||
|
||||
-/
|
||||
|
||||
set_option maxRecDepth 5000 in
|
||||
/-- A rearanging of `pauliCoDown` to place the pauli matrices on the right. -/
|
||||
lemma pauliCoDown_eq_metric_mul_pauliCo :
|
||||
{pauliCoDown | μ α' β' = Fermion.altLeftMetric | α α' ⊗
|
||||
Fermion.altRightMetric | β β' ⊗ pauliCo | μ α β}ᵀ := by
|
||||
conv =>
|
||||
lhs
|
||||
rw [tensorNode_pauliCoDown]
|
||||
rw [contr_tensor_eq <| contr_prod _ _ _]
|
||||
rw [perm_contr]
|
||||
erw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| perm_eq_id _ rfl _]
|
||||
rw [perm_tensor_eq <| contr_congr 1 2]
|
||||
rw [perm_perm]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_congr 1 2]
|
||||
rw [perm_tensor_eq <| perm_contr _ _]
|
||||
rw [perm_perm]
|
||||
rw [perm_tensor_eq <| contr_congr 1 2]
|
||||
rw [perm_perm]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| prod_assoc' _ _ _ _ _ _]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| perm_contr _ _]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| perm_tensor_eq <| contr_congr 1 2]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| perm_perm _ _ _]
|
||||
rw [perm_tensor_eq <| perm_contr _ _]
|
||||
rw [perm_perm]
|
||||
rw [perm_tensor_eq <| contr_congr 1 2]
|
||||
rw [perm_perm]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_tensor_eq <| prod_comm _ _ _ _]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| perm_contr _ _]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| perm_tensor_eq <| contr_congr 5 0]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| perm_perm _ _ _]
|
||||
rw [perm_tensor_eq <| perm_contr _ _]
|
||||
rw [perm_perm]
|
||||
rw [perm_tensor_eq <| contr_congr 4 1]
|
||||
rw [perm_perm]
|
||||
conv =>
|
||||
rhs
|
||||
rw [perm_tensor_eq <| contr_swap _ _]
|
||||
rw [perm_perm]
|
||||
erw [perm_tensor_eq <| contr_congr 4 1]
|
||||
rw [perm_perm]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| contr_swap _ _]
|
||||
erw [perm_tensor_eq <| contr_tensor_eq <| perm_tensor_eq <| contr_congr 5 0]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| perm_perm _ _ _]
|
||||
rw [perm_tensor_eq <| perm_contr _ _]
|
||||
rw [perm_perm]
|
||||
rw [perm_tensor_eq <| contr_congr 4 1]
|
||||
rw [perm_perm]
|
||||
apply perm_congr _ rfl
|
||||
decide
|
||||
|
||||
|
||||
end complexLorentzTensor
|
||||
|
|
|
@ -45,6 +45,13 @@ variable {C : Type} {f g h : OverColor C}
|
|||
lemma ext (m n : f ⟶ g) (h : m.hom = n.hom) : m = n := by
|
||||
apply CategoryTheory.Iso.ext h
|
||||
|
||||
lemma ext_iff (m n : f ⟶ g) : (∀ x, m.hom.left x = n.hom.left x) ↔ m = n := by
|
||||
refine Iff.intro (fun h => ?_) (fun h => ?_)
|
||||
· apply ext
|
||||
ext x
|
||||
exact h x
|
||||
· rw [h]
|
||||
exact fun x => rfl
|
||||
|
||||
/-- Given a hom in `OverColor C` the underlying equivalence between types. -/
|
||||
def toEquiv (m : f ⟶ g) : f.left ≃ g.left where
|
||||
|
|
|
@ -92,7 +92,7 @@ lemma add_neg (t : TensorTree S c) : (add t (neg t)).tensor = 0 := by
|
|||
-/
|
||||
|
||||
/-- Applying two permutations is the same as applying the transitive permutation. -/
|
||||
lemma perm_perm {n : ℕ} {c : Fin n → S.C} {c1 : Fin n → S.C} {c2 : Fin n → S.C}
|
||||
lemma perm_perm {n n1 n2 : ℕ} {c : Fin n → S.C} {c1 : Fin n1 → S.C} {c2 : Fin n2 → S.C}
|
||||
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) (σ2 : (OverColor.mk c1) ⟶ (OverColor.mk c2))
|
||||
(t : TensorTree S c) : (perm σ2 (perm σ t)).tensor = (perm (σ ≫ σ2) t).tensor := by
|
||||
simp [perm_tensor]
|
||||
|
|
|
@ -281,6 +281,20 @@ lemma contr_contr (t : TensorTree S c) :
|
|||
end
|
||||
end ContrQuartet
|
||||
|
||||
def contrContrPerm {n : ℕ} {c : Fin n.succ.succ.succ.succ → S.C} {i : Fin n.succ.succ.succ.succ}
|
||||
{j : Fin n.succ.succ.succ} {k : Fin n.succ.succ} {l : Fin n.succ}
|
||||
(hij : c (i.succAbove j) = S.τ (c i)) (hkl : (c ∘ i.succAbove ∘ j.succAbove) (k.succAbove l) =
|
||||
S.τ ((c ∘ i.succAbove ∘ j.succAbove) k)) :
|
||||
OverColor.mk
|
||||
((c ∘
|
||||
(ContrQuartet.mk i j k l hij hkl).swapI.succAbove ∘
|
||||
(ContrQuartet.mk i j k l hij hkl).swapJ.succAbove) ∘
|
||||
(ContrQuartet.mk i j k l hij hkl).swapK.succAbove ∘
|
||||
(ContrQuartet.mk i j k l hij hkl).swapL.succAbove) ⟶
|
||||
OverColor.mk
|
||||
((c ∘ i.succAbove ∘ j.succAbove) ∘ k.succAbove ∘ l.succAbove)
|
||||
:= (ContrQuartet.mk i j k l hij hkl).contrSwapHom
|
||||
|
||||
/-- Contraction nodes commute on adjusting indices. -/
|
||||
theorem contr_contr {n : ℕ} {c : Fin n.succ.succ.succ.succ → S.C} {i : Fin n.succ.succ.succ.succ}
|
||||
{j : Fin n.succ.succ.succ} {k : Fin n.succ.succ} {l : Fin n.succ}
|
||||
|
@ -288,7 +302,7 @@ theorem contr_contr {n : ℕ} {c : Fin n.succ.succ.succ.succ → S.C} {i : Fin n
|
|||
S.τ ((c ∘ i.succAbove ∘ j.succAbove) k))
|
||||
(t : TensorTree S c) :
|
||||
(contr k l hkl (contr i j hij t)).tensor =
|
||||
(perm (ContrQuartet.mk i j k l hij hkl).contrSwapHom
|
||||
(perm (contrContrPerm hij hkl)
|
||||
(contr (ContrQuartet.mk i j k l hij hkl).swapK (ContrQuartet.mk i j k l hij hkl).swapL
|
||||
(ContrQuartet.mk i j k l hij hkl).swap.hkl (contr (ContrQuartet.mk i j k l hij hkl).swapI
|
||||
(ContrQuartet.mk i j k l hij hkl).swapJ
|
||||
|
|
|
@ -4,6 +4,8 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.Tree.Basic
|
||||
import HepLean.Tensors.Tree.NodeIdentities.Congr
|
||||
import HepLean.Tensors.Tree.NodeIdentities.Basic
|
||||
/-!
|
||||
|
||||
# The commutativity of Permutations and contractions.
|
||||
|
@ -256,4 +258,38 @@ lemma perm_contr {n : ℕ} {c : Fin n.succ.succ → S.C} {c1 : Fin n.succ.succ
|
|||
rw [S.contrMap_naturality σ]
|
||||
rfl
|
||||
|
||||
lemma perm_contr_congr_mkIso_cond {n : ℕ} {c : Fin n.succ.succ → S.C} {c1 : Fin n.succ.succ → S.C}
|
||||
{i : Fin n.succ.succ} {j : Fin n.succ}
|
||||
{σ : (OverColor.mk c) ⟶ (OverColor.mk c1)}
|
||||
{i' : Fin n.succ.succ} {j' : Fin n.succ}
|
||||
(hi : i' = ((Hom.toEquiv σ).symm i))
|
||||
(hj : j' = (((Hom.toEquiv (extractOne i σ))).symm j)) :
|
||||
c ∘ i'.succAbove ∘ j'.succAbove =
|
||||
c ∘ Fin.succAbove ((Hom.toEquiv σ).symm i) ∘ Fin.succAbove ((Hom.toEquiv (extractOne i σ)).symm j) := by
|
||||
rw [hi, hj]
|
||||
|
||||
lemma perm_contr_congr_contr_cond {n : ℕ} {c : Fin n.succ.succ → S.C} {c1 : Fin n.succ.succ → S.C}
|
||||
{i : Fin n.succ.succ} {j : Fin n.succ}
|
||||
(h : c1 (i.succAbove j) = S.τ (c1 i))
|
||||
{σ : (OverColor.mk c) ⟶ (OverColor.mk c1)}
|
||||
{i' : Fin n.succ.succ} {j' : Fin n.succ}
|
||||
(hi : i' = ((Hom.toEquiv σ).symm i))
|
||||
(hj : j' = (((Hom.toEquiv (extractOne i σ))).symm j)) :
|
||||
c (i'.succAbove j') = S.τ (c i') := by
|
||||
rw [hi, hj]
|
||||
exact S.perm_contr_cond h σ
|
||||
|
||||
lemma perm_contr_congr {n : ℕ} {c : Fin n.succ.succ → S.C} {c1 : Fin n.succ.succ → S.C}
|
||||
{i : Fin n.succ.succ} {j : Fin n.succ}
|
||||
{h : c1 (i.succAbove j) = S.τ (c1 i)} {t : TensorTree S c}
|
||||
{σ : (OverColor.mk c) ⟶ (OverColor.mk c1)}
|
||||
(i' : Fin n.succ.succ) (j' : Fin n.succ)
|
||||
(hi : i' = ((Hom.toEquiv σ).symm i) := by decide)
|
||||
(hj : j' = (((Hom.toEquiv (extractOne i σ))).symm j) := by decide) :
|
||||
(contr i j h (perm σ t)).tensor = (perm ((mkIso (perm_contr_congr_mkIso_cond hi hj)).hom ≫
|
||||
extractTwo i j σ) (contr i' j' (perm_contr_congr_contr_cond h hi hj) t)).tensor := by
|
||||
rw [perm_contr]
|
||||
rw [perm_tensor_eq <| contr_congr i' j' hi.symm hj.symm]
|
||||
rw [perm_perm]
|
||||
|
||||
end TensorTree
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue