Merge pull request #178 from HEPLean/ComplexLorentz

feat: Complex Lorentz vectors
This commit is contained in:
Joseph Tooby-Smith 2024-10-03 11:33:09 +00:00 committed by GitHub
commit 47d9649c44
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 292 additions and 18 deletions

View file

@ -81,9 +81,11 @@ import HepLean.SpaceTime.LorentzTensor.Real.Basic
import HepLean.SpaceTime.LorentzTensor.Real.IndexNotation
import HepLean.SpaceTime.LorentzVector.AsSelfAdjointMatrix
import HepLean.SpaceTime.LorentzVector.Basic
import HepLean.SpaceTime.LorentzVector.Complex
import HepLean.SpaceTime.LorentzVector.Contraction
import HepLean.SpaceTime.LorentzVector.Covariant
import HepLean.SpaceTime.LorentzVector.LorentzAction
import HepLean.SpaceTime.LorentzVector.Modules
import HepLean.SpaceTime.LorentzVector.NormOne
import HepLean.SpaceTime.MinkowskiMetric
import HepLean.SpaceTime.SL2C.Basic

View file

@ -21,7 +21,7 @@ open Matrix
open MatrixGroups
open Complex
/-- A 2×2-complex matrix formed from a space-time point. -/
/-- A 2×2-complex matrix formed from a Lorentz vector point. -/
@[simp]
def toMatrix (x : LorentzVector 3) : Matrix (Fin 2) (Fin 2) :=
!![x.time + x.space 2, x.space 0 - x.space 1 * I; x.space 0 + x.space 1 * I, x.time - x.space 2]
@ -34,12 +34,12 @@ lemma toMatrix_isSelfAdjoint (x : LorentzVector 3) : IsSelfAdjoint (toMatrix x)
simp [toMatrix, conj_ofReal]
rfl
/-- A self-adjoint matrix formed from a space-time point. -/
/-- A self-adjoint matrix formed from a Lorentz vector point. -/
@[simps!]
def toSelfAdjointMatrix' (x : LorentzVector 3) : selfAdjoint (Matrix (Fin 2) (Fin 2) ) :=
⟨toMatrix x, toMatrix_isSelfAdjoint x⟩
/-- A self-adjoint matrix formed from a space-time point. -/
/-- A self-adjoint matrix formed from a Lorentz vector point. -/
@[simp]
noncomputable def fromSelfAdjointMatrix' (x : selfAdjoint (Matrix (Fin 2) (Fin 2) )) :
LorentzVector 3 := fun i =>

View file

@ -0,0 +1,39 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import Mathlib.Data.Complex.Exponential
import Mathlib.Analysis.InnerProductSpace.PiL2
import HepLean.SpaceTime.SL2C.Basic
import HepLean.SpaceTime.LorentzVector.Modules
import HepLean.Meta.Informal
import Mathlib.RepresentationTheory.Rep
import HepLean.Tensors.Basic
/-!
# Complex Lorentz vectors
We define complex Lorentz vectors in 4d space-time as representations of SL(2, C).
-/
noncomputable section
open Matrix
open MatrixGroups
open Complex
open TensorProduct
namespace Lorentz
/-- The representation of `SL(2, )` on complex vectors corresponding to contravariant
Lorentz vectors. -/
def complexContr : Rep SL(2, ) := Rep.of ContrModule.SL2CRep
/-- The representation of `SL(2, )` on complex vectors corresponding to contravariant
Lorentz vectors. -/
def complexCo : Rep SL(2, ) := Rep.of CoModule.SL2CRep
end Lorentz
end

View file

@ -0,0 +1,162 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Meta.Informal
import HepLean.SpaceTime.SL2C.Basic
import Mathlib.RepresentationTheory.Rep
import HepLean.Tensors.Basic
import Mathlib.Logic.Equiv.TransferInstance
/-!
## Modules associated with Lorentz vectors
These have not yet been fully-implmented.
We define these modules to prevent casting between different types of Lorentz vectors.
-/
namespace Lorentz
noncomputable section
open Matrix
open MatrixGroups
open Complex
/-- The module for contravariant (up-index) complex Lorentz vectors. -/
structure ContrModule where
/-- The underlying value as a vector `Fin 1 ⊕ Fin 3 → `. -/
val : Fin 1 ⊕ Fin 3 →
namespace ContrModule
/-- The equivalence between `ContrModule` and `Fin 1 ⊕ Fin 3 → `. -/
def toFin13Fun : ContrModule ≃ (Fin 1 ⊕ Fin 3 → ) where
toFun v := v.val
invFun f := ⟨f⟩
left_inv _ := rfl
right_inv _ := rfl
/-- The instance of `AddCommMonoid` on `ContrModule` defined via its equivalence
with `Fin 1 ⊕ Fin 3 → `. -/
instance : AddCommMonoid ContrModule := Equiv.addCommMonoid toFin13Fun
/-- The instance of `AddCommGroup` on `ContrModule` defined via its equivalence
with `Fin 1 ⊕ Fin 3 → `. -/
instance : AddCommGroup ContrModule := Equiv.addCommGroup toFin13Fun
/-- The instance of `Module` on `ContrModule` defined via its equivalence
with `Fin 1 ⊕ Fin 3 → `. -/
instance : Module ContrModule := Equiv.module toFin13Fun
/-- The linear equivalence between `ContrModule` and `(Fin 1 ⊕ Fin 3 → )`. -/
@[simps!]
def toFin13Equiv : ContrModule ≃ₗ[] (Fin 1 ⊕ Fin 3 → ) where
toFun := toFin13Fun
map_add' := fun _ _ => rfl
map_smul' := fun _ _ => rfl
invFun := toFin13Fun.symm
left_inv := fun _ => rfl
right_inv := fun _ => rfl
/-- The underlying element of `Fin 1 ⊕ Fin 3 → ` of a element in `ContrModule` defined
through the linear equivalence `toFin13Equiv`. -/
abbrev toFin13 (ψ : ContrModule) := toFin13Equiv ψ
/-- The representation of the Lorentz group on `ContrModule`. -/
def lorentzGroupRep : Representation (LorentzGroup 3) ContrModule where
toFun M := {
toFun := fun v => toFin13Equiv.symm ((M.1.map ofReal) *ᵥ v.toFin13),
map_add' := by
intro ψ ψ'
simp [mulVec_add]
map_smul' := by
intro r ψ
simp [mulVec_smul]}
map_one' := by
ext i
simp
map_mul' M N := by
ext i
simp
/-- The representation of the SL(2, ) on `ContrModule` induced by the representation of the
Lorentz group. -/
def SL2CRep : Representation SL(2, ) ContrModule :=
MonoidHom.comp lorentzGroupRep SpaceTime.SL2C.toLorentzGroup
end ContrModule
/-- The module for covariant (up-index) complex Lorentz vectors. -/
structure CoModule where
/-- The underlying value as a vector `Fin 1 ⊕ Fin 3 → `. -/
val : Fin 1 ⊕ Fin 3 →
namespace CoModule
/-- The equivalence between `CoModule` and `Fin 1 ⊕ Fin 3 → `. -/
def toFin13Fun : CoModule ≃ (Fin 1 ⊕ Fin 3 → ) where
toFun v := v.val
invFun f := ⟨f⟩
left_inv _ := rfl
right_inv _ := rfl
/-- The instance of `AddCommMonoid` on `CoModule` defined via its equivalence
with `Fin 1 ⊕ Fin 3 → `. -/
instance : AddCommMonoid CoModule := Equiv.addCommMonoid toFin13Fun
/-- The instance of `AddCommGroup` on `CoModule` defined via its equivalence
with `Fin 1 ⊕ Fin 3 → `. -/
instance : AddCommGroup CoModule := Equiv.addCommGroup toFin13Fun
/-- The instance of `Module` on `CoModule` defined via its equivalence
with `Fin 1 ⊕ Fin 3 → `. -/
instance : Module CoModule := Equiv.module toFin13Fun
/-- The linear equivalence between `CoModule` and `(Fin 1 ⊕ Fin 3 → )`. -/
@[simps!]
def toFin13Equiv : CoModule ≃ₗ[] (Fin 1 ⊕ Fin 3 → ) where
toFun := toFin13Fun
map_add' := fun _ _ => rfl
map_smul' := fun _ _ => rfl
invFun := toFin13Fun.symm
left_inv := fun _ => rfl
right_inv := fun _ => rfl
/-- The underlying element of `Fin 1 ⊕ Fin 3 → ` of a element in `CoModule` defined
through the linear equivalence `toFin13Equiv`. -/
abbrev toFin13 (ψ : CoModule) := toFin13Equiv ψ
/-- The representation of the Lorentz group on `CoModule`. -/
def lorentzGroupRep : Representation (LorentzGroup 3) CoModule where
toFun M := {
toFun := fun v => toFin13Equiv.symm ((M.1.map ofReal)⁻¹ᵀ *ᵥ v.toFin13),
map_add' := by
intro ψ ψ'
simp [mulVec_add]
map_smul' := by
intro r ψ
simp [mulVec_smul]}
map_one' := by
ext i
simp
map_mul' M N := by
ext1 x
simp only [SpecialLinearGroup.coe_mul, LinearMap.coe_mk, AddHom.coe_mk, LinearMap.mul_apply,
LinearEquiv.apply_symm_apply, mulVec_mulVec, EmbeddingLike.apply_eq_iff_eq]
refine (congrFun (congrArg _ ?_) _)
simp only [lorentzGroupIsGroup_mul_coe, Matrix.map_mul]
rw [Matrix.mul_inv_rev]
exact transpose_mul _ _
/-- The representation of the SL(2, ) on `ContrModule` induced by the representation of the
Lorentz group. -/
def SL2CRep : Representation SL(2, ) CoModule :=
MonoidHom.comp lorentzGroupRep SpaceTime.SL2C.toLorentzGroup
end CoModule
end
end Lorentz

View file

@ -9,6 +9,7 @@ import Mathlib.CategoryTheory.Monoidal.Category
import Mathlib.CategoryTheory.Comma.Over
import Mathlib.CategoryTheory.Core
import HepLean.SpaceTime.WeylFermion.Basic
import HepLean.SpaceTime.LorentzVector.Complex
/-!
## Category over color
@ -49,8 +50,85 @@ lemma toEquiv_symm_apply (m : f ⟶ g) (i : g.left) :
f.hom ((toEquiv m).symm i) = g.hom i := by
simpa [toEquiv, types_comp] using congrFun m.inv.w i
lemma toEquiv_comp_hom (m : f ⟶ g) : g.hom ∘ (toEquiv m) = f.hom := by
ext x
simpa [types_comp, toEquiv] using congrFun m.hom.w x
end Hom
instance (C : Type) : MonoidalCategoryStruct (OverColor C) where
tensorObj f g := Over.mk (Sum.elim f.hom g.hom)
tensorUnit := Over.mk Empty.elim
whiskerLeft X Y1 Y2 m := Over.isoMk (Equiv.sumCongr (Equiv.refl X.left) (Hom.toEquiv m)).toIso
(by
ext x
simp only [Functor.id_obj, Functor.const_obj_obj, Over.mk_left, Equiv.toIso_hom, Over.mk_hom,
types_comp_apply, Equiv.sumCongr_apply, Equiv.coe_refl]
rw [Sum.elim_map, Hom.toEquiv_comp_hom]
rfl)
whiskerRight m X := Over.isoMk (Equiv.sumCongr (Hom.toEquiv m) (Equiv.refl X.left)).toIso
(by
ext x
simp only [Functor.id_obj, Functor.const_obj_obj, Over.mk_left, Equiv.toIso_hom, Over.mk_hom,
types_comp_apply, Equiv.sumCongr_apply, Equiv.coe_refl]
rw [Sum.elim_map, Hom.toEquiv_comp_hom]
rfl)
associator X Y Z := {
hom := Over.isoMk (Equiv.sumAssoc X.left Y.left Z.left).toIso (by
simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Functor.const_obj_obj, Equiv.sumAssoc,
Equiv.toIso_hom, Equiv.coe_fn_mk, types_comp]
ext x
simp only [Function.comp_apply]
cases x with
| inl val =>
cases val with
| inl val_1 => simp_all only [Sum.elim_inl]
| inr val_2 => simp_all only [Sum.elim_inl, Sum.elim_inr, Function.comp_apply]
| inr val_1 => simp_all only [Sum.elim_inr, Function.comp_apply]),
inv := (Over.isoMk (Equiv.sumAssoc X.left Y.left Z.left).toIso (by
simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Functor.const_obj_obj, Equiv.sumAssoc,
Equiv.toIso_hom, Equiv.coe_fn_mk, types_comp]
ext x
simp only [Function.comp_apply]
cases x with
| inl val =>
cases val with
| inl val_1 => simp_all only [Sum.elim_inl]
| inr val_2 => simp_all only [Sum.elim_inl, Sum.elim_inr, Function.comp_apply]
| inr val_1 => simp_all only [Sum.elim_inr, Function.comp_apply])).symm,
hom_inv_id := by
apply CategoryTheory.Iso.ext
erw [CategoryTheory.Iso.trans_hom]
simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Iso.symm_hom, Iso.hom_inv_id]
rfl,
inv_hom_id := by
apply CategoryTheory.Iso.ext
erw [CategoryTheory.Iso.trans_hom]
simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Iso.symm_hom, Iso.inv_hom_id]
rfl}
leftUnitor X := {
hom := Over.isoMk (Equiv.emptySum Empty X.left).toIso
inv := (Over.isoMk (Equiv.emptySum Empty X.left).toIso).symm
hom_inv_id := by
apply CategoryTheory.Iso.ext
erw [CategoryTheory.Iso.trans_hom]
simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Iso.symm_hom, Iso.hom_inv_id]
rfl,
inv_hom_id := by
apply CategoryTheory.Iso.ext
erw [CategoryTheory.Iso.trans_hom]}
rightUnitor X := {
hom := Over.isoMk (Equiv.sumEmpty X.left Empty).toIso
inv := (Over.isoMk (Equiv.sumEmpty X.left Empty).toIso).symm
hom_inv_id := by
apply CategoryTheory.Iso.ext
erw [CategoryTheory.Iso.trans_hom]
simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Iso.symm_hom, Iso.hom_inv_id]
rfl,
inv_hom_id := by
apply CategoryTheory.Iso.ext
erw [CategoryTheory.Iso.trans_hom]}
end OverColor
end IndexNotation
@ -72,6 +150,8 @@ inductive Color
| downL : Color
| upR : Color
| downR : Color
| up : Color
| down : Color
/-- The corresponding representations associated with a color. -/
def colorToRep (c : Color) : Rep SL(2, ) :=
@ -80,6 +160,8 @@ def colorToRep (c : Color) : Rep SL(2, ) :=
| Color.downL => leftHanded
| Color.upR => altRightHanded
| Color.downR => rightHanded
| Color.up => Lorentz.complexContr
| Color.down => Lorentz.complexCo
/-- The linear equivalence between `colorToRep c1` and `colorToRep c2` when `c1 = c2`. -/
def colorToRepCongr {c1 c2 : Color} (h : c1 = c2) : colorToRep c1 ≃ₗ[] colorToRep c2 where
@ -172,41 +254,30 @@ def colorFun : OverColor Color ⥤ Rep SL(2, ) where
obj := colorFun.obj'
map := colorFun.map'
map_id f := by
simp only
ext x
refine PiTensorProduct.induction_on' x ?_ (by
intro x y hx hy
refine PiTensorProduct.induction_on' x (fun r x => ?_) (fun x y hx hy => by
simp only [CategoryTheory.Functor.id_obj, map_add, hx, ModuleCat.coe_comp,
Function.comp_apply, hy])
intro r x
simp only [CategoryTheory.Functor.id_obj, PiTensorProduct.tprodCoeff_eq_smul_tprod,
_root_.map_smul, Action.id_hom, ModuleCat.id_apply]
apply congrArg
rw [colorFun.map']
erw [colorFun.mapToLinearEquiv'_tprod]
apply congrArg
funext i
rfl
exact congrArg _ (funext (fun i => rfl))
map_comp {X Y Z} f g := by
simp only
ext x
refine PiTensorProduct.induction_on' x ?_ (by
intro x y hx hy
refine PiTensorProduct.induction_on' x (fun r x => ?_) (fun x y hx hy => by
simp only [CategoryTheory.Functor.id_obj, map_add, hx, ModuleCat.coe_comp,
Function.comp_apply, hy])
intro r x
simp only [Functor.id_obj, PiTensorProduct.tprodCoeff_eq_smul_tprod, _root_.map_smul,
Action.comp_hom, ModuleCat.coe_comp, Function.comp_apply]
apply congrArg
rw [colorFun.map', colorFun.map', colorFun.map']
simp only
change (colorFun.mapToLinearEquiv' (CategoryTheory.CategoryStruct.comp f g))
((PiTensorProduct.tprod ) x) =
(colorFun.mapToLinearEquiv' g) ((colorFun.mapToLinearEquiv' f) ((PiTensorProduct.tprod ) x))
rw [colorFun.mapToLinearEquiv'_tprod, colorFun.mapToLinearEquiv'_tprod]
erw [colorFun.mapToLinearEquiv'_tprod]
apply congrArg
funext i
refine congrArg _ (funext (fun i => ?_))
simp only [colorToRepCongr, Function.comp_apply, Equiv.cast_symm, LinearEquiv.coe_mk,
Equiv.cast_apply, cast_cast, cast_inj]
rfl