feat: Redefine FieldOpAlgebra

This commit is contained in:
jstoobysmith 2025-01-28 11:53:24 +00:00
parent 43343376bd
commit 48b0a60f34
6 changed files with 469 additions and 23 deletions

View file

@ -4,6 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.Algebras.CrAnAlgebra.Basic
import HepLean.PerturbationTheory.Algebras.CrAnAlgebra.Grading
/-!
# Super Commute
@ -438,6 +439,349 @@ lemma superCommute_ofCrAnList_ofStateList_eq_sum (φs : List 𝓕.CrAnStates) :
· simp
· simp [Finset.mul_sum, smul_smul, ofStateList_cons, mul_assoc,
FieldStatistic.ofList_cons_eq_mul, mul_comm]
/-!
## Interaction with grading.
-/
lemma superCommute_grade {a b : 𝓕.CrAnAlgebra} {f1 f2 : FieldStatistic}
(ha : a ∈ statisticSubmodule f1) (hb : b ∈ statisticSubmodule f2) :
[a, b]ₛca ∈ statisticSubmodule (f1 + f2) := by
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule f2) : Prop :=
[a, a2]ₛca ∈ statisticSubmodule (f1 + f2)
change p b hb
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs, rfl, hφs⟩ := hx
simp [p]
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule f1) : Prop :=
[a2 , ofCrAnList φs]ₛca ∈ statisticSubmodule (f1 + f2)
change p a ha
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs', rfl, hφs'⟩ := hx
simp [p]
rw [superCommute_ofCrAnList_ofCrAnList]
apply Submodule.sub_mem _
· apply ofCrAnList_mem_statisticSubmodule_of
rw [ofList_append_eq_mul, hφs, hφs']
· apply Submodule.smul_mem
apply ofCrAnList_mem_statisticSubmodule_of
rw [ofList_append_eq_mul, hφs, hφs']
rw [mul_comm]
· simp [p]
· intro x y hx hy hp1 hp2
simp [p]
exact Submodule.add_mem _ hp1 hp2
· intro c x hx hp1
simp [p]
exact Submodule.smul_mem _ c hp1
· exact ha
· simp [p]
· intro x y hx hy hp1 hp2
simp [p]
exact Submodule.add_mem _ hp1 hp2
· intro c x hx hp1
simp [p]
exact Submodule.smul_mem _ c hp1
· exact hb
lemma superCommute_bosonic_bosonic {a b : 𝓕.CrAnAlgebra}
(ha : a ∈ statisticSubmodule bosonic) (hb : b ∈ statisticSubmodule bosonic) :
[a, b]ₛca = a * b - b * a := by
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule bosonic) : Prop :=
[a, a2]ₛca = a * a2 - a2 * a
change p b hb
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs, rfl, hφs⟩ := hx
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule bosonic) : Prop :=
[a2 , ofCrAnList φs]ₛca = a2 * ofCrAnList φs - ofCrAnList φs * a2
change p a ha
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs', rfl, hφs'⟩ := hx
simp [p]
rw [superCommute_ofCrAnList_ofCrAnList]
simp [hφs, ofCrAnList_append]
· simp [p]
· intro x y hx hy hp1 hp2
simp_all [p, mul_add, add_mul]
abel
· intro c x hx hp1
simp_all [p, smul_sub]
· exact ha
· simp [p]
· intro x y hx hy hp1 hp2
simp_all [p, mul_add, add_mul]
abel
· intro c x hx hp1
simp_all [p, smul_sub]
· exact hb
lemma superCommute_bosonic_fermionic {a b : 𝓕.CrAnAlgebra}
(ha : a ∈ statisticSubmodule bosonic) (hb : b ∈ statisticSubmodule fermionic) :
[a, b]ₛca = a * b - b * a := by
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule fermionic) : Prop :=
[a, a2]ₛca = a * a2 - a2 * a
change p b hb
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs, rfl, hφs⟩ := hx
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule bosonic) : Prop :=
[a2 , ofCrAnList φs]ₛca = a2 * ofCrAnList φs - ofCrAnList φs * a2
change p a ha
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs', rfl, hφs'⟩ := hx
simp [p]
rw [superCommute_ofCrAnList_ofCrAnList]
simp [hφs, hφs', ofCrAnList_append]
· simp [p]
· intro x y hx hy hp1 hp2
simp_all [p, mul_add, add_mul]
abel
· intro c x hx hp1
simp_all [p, smul_sub]
· exact ha
· simp [p]
· intro x y hx hy hp1 hp2
simp_all [p, mul_add, add_mul]
abel
· intro c x hx hp1
simp_all [p, smul_sub]
· exact hb
lemma superCommute_fermionic_bonsonic {a b : 𝓕.CrAnAlgebra}
(ha : a ∈ statisticSubmodule fermionic) (hb : b ∈ statisticSubmodule bosonic) :
[a, b]ₛca = a * b - b * a := by
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule bosonic) : Prop :=
[a, a2]ₛca = a * a2 - a2 * a
change p b hb
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs, rfl, hφs⟩ := hx
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule fermionic) : Prop :=
[a2 , ofCrAnList φs]ₛca = a2 * ofCrAnList φs - ofCrAnList φs * a2
change p a ha
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs', rfl, hφs'⟩ := hx
simp [p]
rw [superCommute_ofCrAnList_ofCrAnList]
simp [hφs, hφs', ofCrAnList_append]
· simp [p]
· intro x y hx hy hp1 hp2
simp_all [p, mul_add, add_mul]
abel
· intro c x hx hp1
simp_all [p, smul_sub]
· exact ha
· simp [p]
· intro x y hx hy hp1 hp2
simp_all [p, mul_add, add_mul]
abel
· intro c x hx hp1
simp_all [p, smul_sub]
· exact hb
lemma superCommute_bonsonic {a b : 𝓕.CrAnAlgebra} (hb : b ∈ statisticSubmodule bosonic) :
[a, b]ₛca = a * b - b * a := by
rw [← bosonicProj_add_fermionicProj a]
simp only [map_add, LinearMap.add_apply]
rw [superCommute_bosonic_bosonic (by simp) hb, superCommute_fermionic_bonsonic (by simp) hb]
simp only [add_mul, mul_add]
abel
lemma bosonic_superCommute {a b : 𝓕.CrAnAlgebra} (ha : a ∈ statisticSubmodule bosonic) :
[a, b]ₛca = a * b - b * a := by
rw [← bosonicProj_add_fermionicProj b]
simp only [map_add, LinearMap.add_apply]
rw [superCommute_bosonic_bosonic ha (by simp), superCommute_bosonic_fermionic ha (by simp)]
simp only [add_mul, mul_add]
abel
lemma superCommute_bonsonic_symm {a b : 𝓕.CrAnAlgebra} (hb : b ∈ statisticSubmodule bosonic) :
[a, b]ₛca = - [b, a]ₛca := by
rw [bosonic_superCommute hb, superCommute_bonsonic hb]
simp
lemma bonsonic_superCommute_symm {a b : 𝓕.CrAnAlgebra} (ha : a ∈ statisticSubmodule bosonic) :
[a, b]ₛca = - [b, a]ₛca := by
rw [bosonic_superCommute ha, superCommute_bonsonic ha]
simp
lemma superCommute_fermionic_fermionic {a b : 𝓕.CrAnAlgebra}
(ha : a ∈ statisticSubmodule fermionic) (hb : b ∈ statisticSubmodule fermionic) :
[a, b]ₛca = a * b + b * a := by
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule fermionic) : Prop :=
[a, a2]ₛca = a * a2 + a2 * a
change p b hb
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs, rfl, hφs⟩ := hx
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule fermionic) : Prop :=
[a2 , ofCrAnList φs]ₛca = a2 * ofCrAnList φs + ofCrAnList φs * a2
change p a ha
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs', rfl, hφs'⟩ := hx
simp [p]
rw [superCommute_ofCrAnList_ofCrAnList]
simp [hφs, hφs', ofCrAnList_append]
· simp [p]
· intro x y hx hy hp1 hp2
simp_all [p, mul_add, add_mul]
abel
· intro c x hx hp1
simp_all [p, smul_sub]
· exact ha
· simp [p]
· intro x y hx hy hp1 hp2
simp_all [p, mul_add, add_mul]
abel
· intro c x hx hp1
simp_all [p, smul_sub]
· exact hb
lemma superCommute_fermionic_fermionic_symm {a b : 𝓕.CrAnAlgebra}
(ha : a ∈ statisticSubmodule fermionic) (hb : b ∈ statisticSubmodule fermionic) :
[a, b]ₛca = [b, a]ₛca := by
rw [superCommute_fermionic_fermionic ha hb]
rw [superCommute_fermionic_fermionic hb ha]
abel
lemma superCommute_ofCrAnList_ofCrAnList_bosonic_or_fermionic (φs φs' : List 𝓕.CrAnStates) :
[ofCrAnList φs, ofCrAnList φs']ₛca ∈ statisticSubmodule bosonic
[ofCrAnList φs, ofCrAnList φs']ₛca ∈ statisticSubmodule fermionic := by
by_cases h1 : (𝓕 |>ₛ φs) = bosonic <;> by_cases h2 : (𝓕 |>ₛ φs') = bosonic
· left
have h : bosonic = bosonic + bosonic := by
simp only [add_eq_mul, instCommGroup, mul_self]
rfl
rw [h]
apply superCommute_grade
apply ofCrAnList_mem_statisticSubmodule_of _ _ h1
apply ofCrAnList_mem_statisticSubmodule_of _ _ h2
· right
have h : fermionic = bosonic + fermionic := by
simp only [add_eq_mul, instCommGroup, mul_self]
rfl
rw [h]
apply superCommute_grade
apply ofCrAnList_mem_statisticSubmodule_of _ _ h1
apply ofCrAnList_mem_statisticSubmodule_of _ _ (by simpa using h2)
· right
have h : fermionic = fermionic + bosonic := by
simp only [add_eq_mul, instCommGroup, mul_self]
rfl
rw [h]
apply superCommute_grade
apply ofCrAnList_mem_statisticSubmodule_of _ _ (by simpa using h1)
apply ofCrAnList_mem_statisticSubmodule_of _ _ h2
· left
have h : bosonic = fermionic + fermionic := by
simp only [add_eq_mul, instCommGroup, mul_self]
rfl
rw [h]
apply superCommute_grade
apply ofCrAnList_mem_statisticSubmodule_of _ _ (by simpa using h1)
apply ofCrAnList_mem_statisticSubmodule_of _ _ (by simpa using h2)
lemma superCommute_bosonic_ofCrAnList_eq_sum (a : 𝓕.CrAnAlgebra) (φs : List 𝓕.CrAnStates)
(ha : a ∈ statisticSubmodule bosonic) :
[a, ofCrAnList φs]ₛca = ∑ (n : Fin φs.length),
ofCrAnList (φs.take n) * [a, ofCrAnState (φs.get n)]ₛca *
ofCrAnList (φs.drop (n + 1)) := by
let p (a : 𝓕.CrAnAlgebra) (ha : a ∈ statisticSubmodule bosonic) : Prop :=
[a, ofCrAnList φs]ₛca = ∑ (n : Fin φs.length),
ofCrAnList (φs.take n) * [a, ofCrAnState (φs.get n)]ₛca *
ofCrAnList (φs.drop (n + 1))
change p a ha
apply Submodule.span_induction (p := p)
· intro a ha
obtain ⟨φs, rfl, hφs⟩ := ha
simp [p]
rw [superCommute_ofCrAnList_ofCrAnList_eq_sum]
congr
funext n
simp [hφs]
· simp [p]
· intro x y hx hy hpx hpy
simp_all [p]
rw [← Finset.sum_add_distrib]
congr
funext n
simp [mul_add, add_mul]
· intro c x hx hpx
simp_all [p, Finset.smul_sum]
· exact ha
lemma superCommute_fermionic_ofCrAnList_eq_sum (a : 𝓕.CrAnAlgebra) (φs : List 𝓕.CrAnStates)
(ha : a ∈ statisticSubmodule fermionic) :
[a, ofCrAnList φs]ₛca = ∑ (n : Fin φs.length), 𝓢(fermionic, 𝓕 |>ₛ φs.take n) •
ofCrAnList (φs.take n) * [a, ofCrAnState (φs.get n)]ₛca *
ofCrAnList (φs.drop (n + 1)) := by
let p (a : 𝓕.CrAnAlgebra) (ha : a ∈ statisticSubmodule fermionic) : Prop :=
[a, ofCrAnList φs]ₛca = ∑ (n : Fin φs.length), 𝓢(fermionic, 𝓕 |>ₛ φs.take n) •
ofCrAnList (φs.take n) * [a, ofCrAnState (φs.get n)]ₛca *
ofCrAnList (φs.drop (n + 1))
change p a ha
apply Submodule.span_induction (p := p)
· intro a ha
obtain ⟨φs, rfl, hφs⟩ := ha
simp [p]
rw [superCommute_ofCrAnList_ofCrAnList_eq_sum]
congr
funext n
simp [hφs]
· simp [p]
· intro x y hx hy hpx hpy
simp_all [p]
rw [← Finset.sum_add_distrib]
congr
funext n
simp [mul_add, add_mul]
· intro c x hx hpx
simp_all [p, Finset.smul_sum]
congr
funext x
simp [smul_smul, mul_comm]
· exact ha
lemma statistic_neq_of_superCommute_fermionic {φs φs' : List 𝓕.CrAnStates}
(h : [ofCrAnList φs, ofCrAnList φs']ₛca ∈ statisticSubmodule fermionic) :
(𝓕 |>ₛ φs) ≠ (𝓕 |>ₛ φs') [ofCrAnList φs, ofCrAnList φs']ₛca = 0 := by
by_cases h0 : [ofCrAnList φs, ofCrAnList φs']ₛca = 0
· simp [h0]
simp [h0]
by_contra hn
refine h0 (eq_zero_of_bosonic_and_fermionic ?_ h)
by_cases hc : (𝓕 |>ₛ φs) = bosonic
· have h1 : bosonic = bosonic + bosonic := by
simp
rfl
rw [h1]
apply superCommute_grade
apply ofCrAnList_mem_statisticSubmodule_of _ _ hc
apply ofCrAnList_mem_statisticSubmodule_of _ _
rw [← hn, hc]
· have h1 : bosonic = fermionic + fermionic := by
simp
rfl
rw [h1]
apply superCommute_grade
apply ofCrAnList_mem_statisticSubmodule_of _ _
simpa using hc
apply ofCrAnList_mem_statisticSubmodule_of _ _
rw [← hn]
simpa using hc
end CrAnAlgebra