refactor: rename ofCrAnOpList to ofCrAnList
This commit is contained in:
parent
2d561dd89d
commit
48e3417d5d
6 changed files with 97 additions and 97 deletions
|
@ -212,10 +212,10 @@ lemma superCommute_anPart_ofFieldOp_mem_center (φ φ' : 𝓕.FieldOp) :
|
|||
|
||||
-/
|
||||
|
||||
lemma superCommute_ofCrAnOpList_ofCrAnOpList (φs φs' : List 𝓕.CrAnFieldOp) :
|
||||
[ofCrAnOpList φs, ofCrAnOpList φs']ₛ =
|
||||
ofCrAnOpList (φs ++ φs') - 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofCrAnOpList (φs' ++ φs) := by
|
||||
rw [ofCrAnOpList_eq_ι_ofCrAnListF, ofCrAnOpList_eq_ι_ofCrAnListF]
|
||||
lemma superCommute_ofCrAnList_ofCrAnList (φs φs' : List 𝓕.CrAnFieldOp) :
|
||||
[ofCrAnList φs, ofCrAnList φs']ₛ =
|
||||
ofCrAnList (φs ++ φs') - 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofCrAnList (φs' ++ φs) := by
|
||||
rw [ofCrAnList_eq_ι_ofCrAnListF, ofCrAnList_eq_ι_ofCrAnListF]
|
||||
rw [superCommute_eq_ι_superCommuteF, superCommuteF_ofCrAnListF_ofCrAnListF]
|
||||
rfl
|
||||
|
||||
|
@ -226,11 +226,11 @@ lemma superCommute_ofCrAnOp_ofCrAnOp (φ φ' : 𝓕.CrAnFieldOp) :
|
|||
rw [superCommute_eq_ι_superCommuteF, superCommuteF_ofCrAnOpF_ofCrAnOpF]
|
||||
rfl
|
||||
|
||||
lemma superCommute_ofCrAnOpList_ofFieldOpList (φcas : List 𝓕.CrAnFieldOp)
|
||||
lemma superCommute_ofCrAnList_ofFieldOpList (φcas : List 𝓕.CrAnFieldOp)
|
||||
(φs : List 𝓕.FieldOp) :
|
||||
[ofCrAnOpList φcas, ofFieldOpList φs]ₛ = ofCrAnOpList φcas * ofFieldOpList φs -
|
||||
𝓢(𝓕 |>ₛ φcas, 𝓕 |>ₛ φs) • ofFieldOpList φs * ofCrAnOpList φcas := by
|
||||
rw [ofCrAnOpList, ofFieldOpList]
|
||||
[ofCrAnList φcas, ofFieldOpList φs]ₛ = ofCrAnList φcas * ofFieldOpList φs -
|
||||
𝓢(𝓕 |>ₛ φcas, 𝓕 |>ₛ φs) • ofFieldOpList φs * ofCrAnList φcas := by
|
||||
rw [ofCrAnList, ofFieldOpList]
|
||||
rw [superCommute_eq_ι_superCommuteF, superCommuteF_ofCrAnListF_ofFieldOpFsList]
|
||||
rfl
|
||||
|
||||
|
@ -362,18 +362,18 @@ multiplication with a sign plus the super commutor.
|
|||
|
||||
-/
|
||||
|
||||
lemma ofCrAnOpList_mul_ofCrAnOpList_eq_superCommute (φs φs' : List 𝓕.CrAnFieldOp) :
|
||||
ofCrAnOpList φs * ofCrAnOpList φs' =
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofCrAnOpList φs' * ofCrAnOpList φs
|
||||
+ [ofCrAnOpList φs, ofCrAnOpList φs']ₛ := by
|
||||
rw [superCommute_ofCrAnOpList_ofCrAnOpList]
|
||||
simp [ofCrAnOpList_append]
|
||||
lemma ofCrAnList_mul_ofCrAnList_eq_superCommute (φs φs' : List 𝓕.CrAnFieldOp) :
|
||||
ofCrAnList φs * ofCrAnList φs' =
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofCrAnList φs' * ofCrAnList φs
|
||||
+ [ofCrAnList φs, ofCrAnList φs']ₛ := by
|
||||
rw [superCommute_ofCrAnList_ofCrAnList]
|
||||
simp [ofCrAnList_append]
|
||||
|
||||
lemma ofCrAnOp_mul_ofCrAnOpList_eq_superCommute (φ : 𝓕.CrAnFieldOp)
|
||||
(φs' : List 𝓕.CrAnFieldOp) : ofCrAnOp φ * ofCrAnOpList φs' =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • ofCrAnOpList φs' * ofCrAnOp φ
|
||||
+ [ofCrAnOp φ, ofCrAnOpList φs']ₛ := by
|
||||
rw [← ofCrAnOpList_singleton, ofCrAnOpList_mul_ofCrAnOpList_eq_superCommute]
|
||||
lemma ofCrAnOp_mul_ofCrAnList_eq_superCommute (φ : 𝓕.CrAnFieldOp)
|
||||
(φs' : List 𝓕.CrAnFieldOp) : ofCrAnOp φ * ofCrAnList φs' =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • ofCrAnList φs' * ofCrAnOp φ
|
||||
+ [ofCrAnOp φ, ofCrAnList φs']ₛ := by
|
||||
rw [← ofCrAnList_singleton, ofCrAnList_mul_ofCrAnList_eq_superCommute]
|
||||
simp
|
||||
|
||||
lemma ofFieldOpList_mul_ofFieldOpList_eq_superCommute (φs φs' : List 𝓕.FieldOp) :
|
||||
|
@ -402,11 +402,11 @@ lemma ofFieldOpList_mul_ofFieldOp_eq_superCommute (φs : List 𝓕.FieldOp) (φ
|
|||
rw [superCommute_ofFieldOpList_ofFieldOp]
|
||||
simp
|
||||
|
||||
lemma ofCrAnOpList_mul_ofFieldOpList_eq_superCommute (φs : List 𝓕.CrAnFieldOp)
|
||||
(φs' : List 𝓕.FieldOp) : ofCrAnOpList φs * ofFieldOpList φs' =
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofFieldOpList φs' * ofCrAnOpList φs
|
||||
+ [ofCrAnOpList φs, ofFieldOpList φs']ₛ := by
|
||||
rw [superCommute_ofCrAnOpList_ofFieldOpList]
|
||||
lemma ofCrAnList_mul_ofFieldOpList_eq_superCommute (φs : List 𝓕.CrAnFieldOp)
|
||||
(φs' : List 𝓕.FieldOp) : ofCrAnList φs * ofFieldOpList φs' =
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofFieldOpList φs' * ofCrAnList φs
|
||||
+ [ofCrAnList φs, ofFieldOpList φs']ₛ := by
|
||||
rw [superCommute_ofCrAnList_ofFieldOpList]
|
||||
simp
|
||||
|
||||
lemma crPart_mul_anPart_eq_superCommute (φ φ' : 𝓕.FieldOp) :
|
||||
|
@ -441,10 +441,10 @@ lemma anPart_mul_anPart_swap (φ φ' : 𝓕.FieldOp) :
|
|||
|
||||
-/
|
||||
|
||||
lemma superCommute_ofCrAnOpList_ofCrAnOpList_symm (φs φs' : List 𝓕.CrAnFieldOp) :
|
||||
[ofCrAnOpList φs, ofCrAnOpList φs']ₛ =
|
||||
(- 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs')) • [ofCrAnOpList φs', ofCrAnOpList φs]ₛ := by
|
||||
rw [ofCrAnOpList, ofCrAnOpList, superCommute_eq_ι_superCommuteF,
|
||||
lemma superCommute_ofCrAnList_ofCrAnList_symm (φs φs' : List 𝓕.CrAnFieldOp) :
|
||||
[ofCrAnList φs, ofCrAnList φs']ₛ =
|
||||
(- 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs')) • [ofCrAnList φs', ofCrAnList φs]ₛ := by
|
||||
rw [ofCrAnList, ofCrAnList, superCommute_eq_ι_superCommuteF,
|
||||
superCommuteF_ofCrAnListF_ofCrAnListF_symm]
|
||||
rfl
|
||||
|
||||
|
@ -461,39 +461,39 @@ lemma superCommute_ofCrAnOp_ofCrAnOp_symm (φ φ' : 𝓕.CrAnFieldOp) :
|
|||
|
||||
-/
|
||||
|
||||
lemma superCommute_ofCrAnOpList_ofCrAnOpList_eq_sum (φs φs' : List 𝓕.CrAnFieldOp) :
|
||||
[ofCrAnOpList φs, ofCrAnOpList φs']ₛ =
|
||||
lemma superCommute_ofCrAnList_ofCrAnList_eq_sum (φs φs' : List 𝓕.CrAnFieldOp) :
|
||||
[ofCrAnList φs, ofCrAnList φs']ₛ =
|
||||
∑ (n : Fin φs'.length), 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs'.take n) •
|
||||
ofCrAnOpList (φs'.take n) * [ofCrAnOpList φs, ofCrAnOp (φs'.get n)]ₛ *
|
||||
ofCrAnOpList (φs'.drop (n + 1)) := by
|
||||
ofCrAnList (φs'.take n) * [ofCrAnList φs, ofCrAnOp (φs'.get n)]ₛ *
|
||||
ofCrAnList (φs'.drop (n + 1)) := by
|
||||
conv_lhs =>
|
||||
rw [ofCrAnOpList, ofCrAnOpList, superCommute_eq_ι_superCommuteF,
|
||||
rw [ofCrAnList, ofCrAnList, superCommute_eq_ι_superCommuteF,
|
||||
superCommuteF_ofCrAnListF_ofCrAnListF_eq_sum]
|
||||
rw [map_sum]
|
||||
rfl
|
||||
|
||||
lemma superCommute_ofCrAnOp_ofCrAnOpList_eq_sum (φ : 𝓕.CrAnFieldOp)
|
||||
(φs' : List 𝓕.CrAnFieldOp) : [ofCrAnOp φ, ofCrAnOpList φs']ₛ =
|
||||
lemma superCommute_ofCrAnOp_ofCrAnList_eq_sum (φ : 𝓕.CrAnFieldOp)
|
||||
(φs' : List 𝓕.CrAnFieldOp) : [ofCrAnOp φ, ofCrAnList φs']ₛ =
|
||||
∑ (n : Fin φs'.length), 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs'.take n) •
|
||||
[ofCrAnOp φ, ofCrAnOp (φs'.get n)]ₛ * ofCrAnOpList (φs'.eraseIdx n) := by
|
||||
[ofCrAnOp φ, ofCrAnOp (φs'.get n)]ₛ * ofCrAnList (φs'.eraseIdx n) := by
|
||||
conv_lhs =>
|
||||
rw [← ofCrAnOpList_singleton, superCommute_ofCrAnOpList_ofCrAnOpList_eq_sum]
|
||||
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList_eq_sum]
|
||||
congr
|
||||
funext n
|
||||
simp only [instCommGroup.eq_1, ofList_singleton, List.get_eq_getElem, Algebra.smul_mul_assoc]
|
||||
congr 1
|
||||
rw [ofCrAnOpList_singleton, superCommute_ofCrAnOp_ofCrAnOp_commute]
|
||||
rw [mul_assoc, ← ofCrAnOpList_append]
|
||||
rw [ofCrAnList_singleton, superCommute_ofCrAnOp_ofCrAnOp_commute]
|
||||
rw [mul_assoc, ← ofCrAnList_append]
|
||||
congr
|
||||
exact Eq.symm (List.eraseIdx_eq_take_drop_succ φs' ↑n)
|
||||
|
||||
lemma superCommute_ofCrAnOpList_ofFieldOpList_eq_sum (φs : List 𝓕.CrAnFieldOp)
|
||||
(φs' : List 𝓕.FieldOp) : [ofCrAnOpList φs, ofFieldOpList φs']ₛ =
|
||||
lemma superCommute_ofCrAnList_ofFieldOpList_eq_sum (φs : List 𝓕.CrAnFieldOp)
|
||||
(φs' : List 𝓕.FieldOp) : [ofCrAnList φs, ofFieldOpList φs']ₛ =
|
||||
∑ (n : Fin φs'.length), 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs'.take n) •
|
||||
ofFieldOpList (φs'.take n) * [ofCrAnOpList φs, ofFieldOp (φs'.get n)]ₛ *
|
||||
ofFieldOpList (φs'.take n) * [ofCrAnList φs, ofFieldOp (φs'.get n)]ₛ *
|
||||
ofFieldOpList (φs'.drop (n + 1)) := by
|
||||
conv_lhs =>
|
||||
rw [ofCrAnOpList, ofFieldOpList, superCommute_eq_ι_superCommuteF,
|
||||
rw [ofCrAnList, ofFieldOpList, superCommute_eq_ι_superCommuteF,
|
||||
superCommuteF_ofCrAnListF_ofFieldOpListF_eq_sum]
|
||||
rw [map_sum]
|
||||
rfl
|
||||
|
@ -503,12 +503,12 @@ lemma superCommute_ofCrAnOp_ofFieldOpList_eq_sum (φ : 𝓕.CrAnFieldOp) (φs' :
|
|||
∑ (n : Fin φs'.length), 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs'.take n) •
|
||||
[ofCrAnOp φ, ofFieldOp (φs'.get n)]ₛ * ofFieldOpList (φs'.eraseIdx n) := by
|
||||
conv_lhs =>
|
||||
rw [← ofCrAnOpList_singleton, superCommute_ofCrAnOpList_ofFieldOpList_eq_sum]
|
||||
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofFieldOpList_eq_sum]
|
||||
congr
|
||||
funext n
|
||||
simp only [instCommGroup.eq_1, ofList_singleton, List.get_eq_getElem, Algebra.smul_mul_assoc]
|
||||
congr 1
|
||||
rw [ofCrAnOpList_singleton, superCommute_ofCrAnOp_ofFieldOp_commute]
|
||||
rw [ofCrAnList_singleton, superCommute_ofCrAnOp_ofFieldOp_commute]
|
||||
rw [mul_assoc, ← ofFieldOpList_append]
|
||||
congr
|
||||
exact Eq.symm (List.eraseIdx_eq_take_drop_succ φs' ↑n)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue