refactor: Replace some simp with simp only

This commit is contained in:
jstoobysmith 2024-09-04 15:33:54 -04:00
parent da5e0e3f00
commit 49d089d4cd
17 changed files with 56 additions and 41 deletions

View file

@ -71,9 +71,11 @@ lemma doublePoint_Y₃_Y₃ (R : MSSMACC.LinSols) :
simp only [mul_one, Fin.isValue, toSMSpecies_apply, one_mul, mul_neg, neg_mul, neg_neg, mul_zero,
zero_mul, add_zero, Hd_apply, Fin.reduceFinMk, Hu_apply]
have hLin := R.linearSol
simp at hLin
simp only [MSSMACC_numberLinear, MSSMACC_linearACCs, Nat.reduceMul, Fin.isValue,
Fin.reduceFinMk] at hLin
have h3 := hLin 3
simp [Fin.sum_univ_three] at h3
simp only [Fin.isValue, Fin.sum_univ_three, Prod.mk_zero_zero, Prod.mk_one_one, LinearMap.coe_mk,
AddHom.coe_mk] at h3
linear_combination (norm := ring_nf) 6 * h3
simp only [Fin.isValue, Prod.mk_zero_zero, Prod.mk_one_one, add_add_sub_cancel, add_neg_cancel]

View file

@ -51,7 +51,8 @@ def permCharges {n : } : Representation (PermGroup n) (PureU1 n).Charges
lemma accGrav_invariant {n : } (f : (PermGroup n)) (S : (PureU1 n).Charges) :
PureU1.accGrav n (permCharges f S) = accGrav n S := by
simp [accGrav, permCharges]
simp only [accGrav, PermGroup, permCharges, MonoidHom.coe_mk, OneHom.coe_mk, LinearMap.coe_mk,
AddHom.coe_mk, chargeMap_apply]
apply (Equiv.Perm.sum_comp _ _ _ ?_)
simp
@ -144,7 +145,7 @@ lemma pairSwap_other {n : } (i j k : Fin n) (hik : i ≠ k) (hjk : j ≠ k) :
lemma pairSwap_inv_other {n : } {i j k : Fin n} (hik : i ≠ k) (hjk : j ≠ k) :
(pairSwap i j).invFun k = k := by
simp [pairSwap]
simp only [pairSwap, Equiv.invFun_as_coe, Equiv.coe_fn_symm_mk]
split
· rename_i h
exact False.elim (hik (id (Eq.symm h)))
@ -197,8 +198,8 @@ lemma permTwo_fst : (permTwo hij hij').toFun i' = i := by
have ht := Equiv.extendSubtype_apply_of_mem
((permTwoInj hij').toEquivRange.symm.trans
(permTwoInj hij).toEquivRange) i' (permTwoInj_fst hij')
simp at ht
simp [ht, permTwoInj_fst_apply]
simp only [Equiv.trans_apply, Function.Embedding.toEquivRange_apply] at ht
simp only [Equiv.toFun_as_coe, ht, permTwoInj_fst_apply, Fin.isValue]
rfl
lemma permTwo_snd : (permTwo hij hij').toFun j' = j := by

View file

@ -269,7 +269,7 @@ def cubeTriLin : TriLinearSymm (SMCharges n).Charges := TriLinearSymm.mk₃
apply Fintype.sum_congr
intro i
repeat erw [map_smul]
simp [HSMul.hSMul, SMul.smul]
simp only [HSMul.hSMul, SMul.smul, toSpecies_apply, Fin.isValue]
ring)
(by
intro S T R L

View file

@ -38,12 +38,12 @@ variable {n : }
lemma SU2Sol (S : (SMNoGrav n).LinSols) : accSU2 S.val = 0 := by
have hS := S.linearSol
simp at hS
simp only [SMNoGrav_numberLinear, SMNoGrav_linearACCs, Fin.isValue] at hS
exact hS 0
lemma SU3Sol (S : (SMNoGrav n).LinSols) : accSU3 S.val = 0 := by
have hS := S.linearSol
simp at hS
simp only [SMNoGrav_numberLinear, SMNoGrav_linearACCs, Fin.isValue] at hS
exact hS 1
lemma cubeSol (S : (SMNoGrav n).Sols) : accCube S.val = 0 := by
@ -55,7 +55,7 @@ def chargeToLinear (S : (SMNoGrav n).Charges) (hSU2 : accSU2 S = 0) (hSU3 : accS
(SMNoGrav n).LinSols :=
⟨S, by
intro i
simp at i
simp only [SMNoGrav_numberLinear] at i
match i with
| 0 => exact hSU2
| 1 => exact hSU3⟩

View file

@ -37,17 +37,17 @@ variable {n : }
lemma gravSol (S : (SM n).LinSols) : accGrav S.val = 0 := by
have hS := S.linearSol
simp at hS
simp only [SM_numberLinear, SM_linearACCs, Fin.isValue] at hS
exact hS 0
lemma SU2Sol (S : (SM n).LinSols) : accSU2 S.val = 0 := by
have hS := S.linearSol
simp at hS
simp only [SM_numberLinear, SM_linearACCs, Fin.isValue] at hS
exact hS 1
lemma SU3Sol (S : (SM n).LinSols) : accSU3 S.val = 0 := by
have hS := S.linearSol
simp at hS
simp only [SM_numberLinear, SM_linearACCs, Fin.isValue] at hS
exact hS 2
lemma cubeSol (S : (SM n).Sols) : accCube S.val = 0 := S.cubicSol
@ -58,7 +58,7 @@ def chargeToLinear (S : (SM n).Charges) (hGrav : accGrav S = 0)
(hSU2 : accSU2 S = 0) (hSU3 : accSU3 S = 0) : (SM n).LinSols :=
⟨S, by
intro i
simp at i
simp only [SM_numberLinear] at i
match i with
| 0 => exact hGrav
| 1 => exact hSU2
@ -100,14 +100,14 @@ def perm (n : ) : ACCSystemGroupAction (SM n) where
rep := repCharges
linearInvariant := by
intro i
simp at i
simp only [SM_numberLinear] at i
match i with
| 0 => exact accGrav_invariant
| 1 => exact accSU2_invariant
| 2 => exact accSU3_invariant
quadInvariant := by
intro i
simp at i
simp only [SM_numberQuadratic] at i
exact Fin.elim0 i
cubicInvariant := accCube_invariant