Merge pull request #83 from HEPLean/Tensors
feat: defined mult and contract of Lorentz tensors
This commit is contained in:
commit
4a3f155baf
1 changed files with 273 additions and 35 deletions
|
@ -6,6 +6,7 @@ Authors: Joseph Tooby-Smith
|
|||
import Mathlib.Logic.Function.CompTypeclasses
|
||||
import Mathlib.Data.Real.Basic
|
||||
import Mathlib.CategoryTheory.FintypeCat
|
||||
import Mathlib.Analysis.Normed.Field.Basic
|
||||
/-!
|
||||
|
||||
# Lorentz Tensors
|
||||
|
@ -40,40 +41,33 @@ def RealLorentzTensor.ColorsIndex (d : ℕ) (μ : RealLorentzTensor.Colors) : Ty
|
|||
| RealLorentzTensor.Colors.up => Fin 1 ⊕ Fin d
|
||||
| RealLorentzTensor.Colors.down => Fin 1 ⊕ Fin d
|
||||
|
||||
instance (d : ℕ) (μ : RealLorentzTensor.Colors) : Fintype (RealLorentzTensor.ColorsIndex d μ) :=
|
||||
match μ with
|
||||
| RealLorentzTensor.Colors.up => instFintypeSum (Fin 1) (Fin d)
|
||||
| RealLorentzTensor.Colors.down => instFintypeSum (Fin 1) (Fin d)
|
||||
|
||||
/-- An `IndexValue` is a set of actual values an index can take. e.g. for a
|
||||
3-tensor (0, 1, 2). -/
|
||||
@[simp]
|
||||
def RealLorentzTensor.IndexValue {X : FintypeCat} (d : ℕ ) (c : X → RealLorentzTensor.Colors) :
|
||||
Type 0 := (x : X) → RealLorentzTensor.ColorsIndex d (c x)
|
||||
|
||||
/-- A Lorentz Tensor defined by its coordinate map. -/
|
||||
structure RealLorentzTensor (d : ℕ) (X : FintypeCat) where
|
||||
/-- The color associated to each index of the tensor. -/
|
||||
color : X → RealLorentzTensor.Colors
|
||||
/-- The coordinate map for the tensor. -/
|
||||
coord : ((x : X) → RealLorentzTensor.ColorsIndex d (color x)) → ℝ
|
||||
coord : RealLorentzTensor.IndexValue d color → ℝ
|
||||
|
||||
namespace RealLorentzTensor
|
||||
open CategoryTheory
|
||||
universe u1
|
||||
variable {d : ℕ} {X Y Z : FintypeCat.{u1}}
|
||||
variable {d : ℕ} {X Y Z : FintypeCat.{0}}
|
||||
/-!
|
||||
|
||||
/-- An `IndexType` for a tensor is an element of
|
||||
`(x : X) → RealLorentzTensor.ColorsIndex d (T.color x)`. -/
|
||||
@[simp]
|
||||
def IndexType (T : RealLorentzTensor d X) : Type u1 :=
|
||||
(x : X) → RealLorentzTensor.ColorsIndex d (T.color x)
|
||||
## Colors
|
||||
|
||||
lemma indexType_eq {T₁ T₂ : RealLorentzTensor d X} (h : T₁.color = T₂.color) :
|
||||
T₁.IndexType = T₂.IndexType := by
|
||||
simp only [IndexType]
|
||||
rw [h]
|
||||
|
||||
lemma ext {T₁ T₂ : RealLorentzTensor d X} (h : T₁.color = T₂.color)
|
||||
(h' : T₁.coord = T₂.coord ∘ Equiv.cast (indexType_eq h)) : T₁ = T₂ := by
|
||||
cases T₁
|
||||
cases T₂
|
||||
simp_all only [IndexType, mk.injEq]
|
||||
apply And.intro h
|
||||
simp only at h
|
||||
subst h
|
||||
simp only [Equiv.cast_refl, Equiv.coe_refl, CompTriple.comp_eq] at h'
|
||||
subst h'
|
||||
rfl
|
||||
-/
|
||||
|
||||
/-- The involution acting on colors. -/
|
||||
def τ : Colors → Colors
|
||||
|
@ -81,6 +75,7 @@ def τ : Colors → Colors
|
|||
| Colors.down => Colors.up
|
||||
|
||||
/-- The map τ is an involution. -/
|
||||
@[simp]
|
||||
lemma τ_involutive : Function.Involutive τ := by
|
||||
intro x
|
||||
cases x <;> rfl
|
||||
|
@ -88,6 +83,90 @@ lemma τ_involutive : Function.Involutive τ := by
|
|||
/-- The color associated with an element of `x ∈ X` for a tensor `T`. -/
|
||||
def ch {X : FintypeCat} (x : X) (T : RealLorentzTensor d X) : Colors := T.color x
|
||||
|
||||
/-- An equivalence of `ColorsIndex` between that of a color and that of its dual. -/
|
||||
def dualColorsIndex {d : ℕ} {μ : RealLorentzTensor.Colors}:
|
||||
ColorsIndex d μ ≃ ColorsIndex d (τ μ) where
|
||||
toFun x :=
|
||||
match μ with
|
||||
| RealLorentzTensor.Colors.up => x
|
||||
| RealLorentzTensor.Colors.down => x
|
||||
invFun x :=
|
||||
match μ with
|
||||
| RealLorentzTensor.Colors.up => x
|
||||
| RealLorentzTensor.Colors.down => x
|
||||
left_inv x := by cases μ <;> rfl
|
||||
right_inv x := by cases μ <;> rfl
|
||||
|
||||
/-- An equivalence of `ColorsIndex` types given an equality of a colors. -/
|
||||
def castColorsIndex {d : ℕ} {μ₁ μ₂ : RealLorentzTensor.Colors} (h : μ₁ = μ₂) :
|
||||
ColorsIndex d μ₁ ≃ ColorsIndex d μ₂ :=
|
||||
Equiv.cast (by rw [h])
|
||||
|
||||
/-- An equivalence of `ColorsIndex` types given an equality of a color and the dual of a color. -/
|
||||
def congrColorsDual {μ ν : Colors} (h : μ = τ ν) :
|
||||
ColorsIndex d μ ≃ ColorsIndex d ν :=
|
||||
(castColorsIndex h).trans dualColorsIndex.symm
|
||||
|
||||
lemma congrColorsDual_symm {μ ν : Colors} (h : μ = τ ν) :
|
||||
(congrColorsDual h).symm =
|
||||
@congrColorsDual d _ _ ((Function.Involutive.eq_iff τ_involutive).mp h.symm) := by
|
||||
match μ, ν with
|
||||
| Colors.up, Colors.down => rfl
|
||||
| Colors.down, Colors.up => rfl
|
||||
|
||||
lemma color_eq_dual_symm {μ ν : Colors} (h : μ = τ ν) : ν = τ μ :=
|
||||
(Function.Involutive.eq_iff τ_involutive).mp h.symm
|
||||
|
||||
/-!
|
||||
|
||||
## Index values
|
||||
|
||||
-/
|
||||
|
||||
/-- An equivalence of Index values from an equality of color maps. -/
|
||||
def castIndexValue {X : FintypeCat} {T S : X → Colors} (h : T = S) :
|
||||
IndexValue d T ≃ IndexValue d S where
|
||||
toFun i := (fun μ => castColorsIndex (congrFun h μ) (i μ))
|
||||
invFun i := (fun μ => (castColorsIndex (congrFun h μ)).symm (i μ))
|
||||
left_inv i := by
|
||||
simp
|
||||
right_inv i := by
|
||||
simp
|
||||
|
||||
lemma indexValue_eq {T₁ T₂ : X → RealLorentzTensor.Colors} (d : ℕ) (h : T₁ = T₂) :
|
||||
IndexValue d T₁ = IndexValue d T₂ :=
|
||||
pi_congr fun a => congrArg (ColorsIndex d) (congrFun h a)
|
||||
|
||||
/-!
|
||||
|
||||
## Extensionality
|
||||
|
||||
-/
|
||||
|
||||
lemma ext {T₁ T₂ : RealLorentzTensor d X} (h : T₁.color = T₂.color)
|
||||
(h' : T₁.coord = T₂.coord ∘ Equiv.cast (indexValue_eq d h)) : T₁ = T₂ := by
|
||||
cases T₁
|
||||
cases T₂
|
||||
simp_all only [IndexValue, mk.injEq]
|
||||
apply And.intro h
|
||||
simp only at h
|
||||
subst h
|
||||
simp only [Equiv.cast_refl, Equiv.coe_refl, CompTriple.comp_eq] at h'
|
||||
subst h'
|
||||
rfl
|
||||
|
||||
lemma ext' {T₁ T₂ : RealLorentzTensor d X} (h : T₁.color = T₂.color)
|
||||
(h' : T₁.coord = fun i => T₂.coord (castIndexValue h i)) :
|
||||
T₁ = T₂ := by
|
||||
cases T₁
|
||||
cases T₂
|
||||
simp_all only [IndexValue, mk.injEq]
|
||||
apply And.intro h
|
||||
simp only at h
|
||||
subst h
|
||||
simp only [Equiv.cast_refl, Equiv.coe_refl, CompTriple.comp_eq] at h'
|
||||
rfl
|
||||
|
||||
/-!
|
||||
|
||||
## Congruence
|
||||
|
@ -96,24 +175,23 @@ def ch {X : FintypeCat} (x : X) (T : RealLorentzTensor d X) : Colors := T.color
|
|||
|
||||
/-- An equivalence between `X → Fin 1 ⊕ Fin d` and `Y → Fin 1 ⊕ Fin d` given an isomorphism
|
||||
between `X` and `Y`. -/
|
||||
def congrSetIndexType (d : ℕ) (f : X ≃ Y) (i : X → Colors) :
|
||||
((x : X) → ColorsIndex d (i x)) ≃ ((y : Y) → ColorsIndex d ((Equiv.piCongrLeft' _ f) i y)) :=
|
||||
Equiv.piCongrLeft' _ (f)
|
||||
def congrSetIndexValue (d : ℕ) (f : X ≃ Y) (i : X → Colors) :
|
||||
IndexValue d i ≃ IndexValue d (i ∘ f.symm) :=
|
||||
Equiv.piCongrLeft' _ f
|
||||
|
||||
/-- Given an equivalence of indexing sets, a map on Lorentz tensors. -/
|
||||
@[simps!]
|
||||
def congrSetMap (f : X ≃ Y) (T : RealLorentzTensor d X) : RealLorentzTensor d Y where
|
||||
color := (Equiv.piCongrLeft' _ f) T.color
|
||||
coord := (Equiv.piCongrLeft' _ (congrSetIndexType d f T.color)) T.coord
|
||||
color := T.color ∘ f.symm
|
||||
coord := T.coord ∘ (congrSetIndexValue d f T.color).symm
|
||||
|
||||
lemma congrSetMap_trans (f : X ≃ Y) (g : Y ≃ Z) (T : RealLorentzTensor d X) :
|
||||
congrSetMap g (congrSetMap f T) = congrSetMap (f.trans g) T := by
|
||||
apply ext (by rfl)
|
||||
have h1 : (congrSetIndexType d (f.trans g) T.color) = (congrSetIndexType d f T.color).trans
|
||||
(congrSetIndexType d g ((Equiv.piCongrLeft' (fun _ => Colors) f) T.color)) := by
|
||||
simp only [Equiv.piCongrLeft'_apply, Equiv.symm_trans_apply, congrSetIndexType]
|
||||
have h1 : (congrSetIndexValue d (f.trans g) T.color) = (congrSetIndexValue d f T.color).trans
|
||||
(congrSetIndexValue d g ((Equiv.piCongrLeft' (fun _ => Colors) f) T.color)) := by
|
||||
exact Equiv.coe_inj.mp rfl
|
||||
simp only [congrSetMap, Equiv.piCongrLeft'_apply, IndexType, Equiv.symm_trans_apply, h1,
|
||||
simp only [congrSetMap, Equiv.piCongrLeft'_apply, IndexValue, Equiv.symm_trans_apply, h1,
|
||||
Equiv.cast_refl, Equiv.coe_refl, CompTriple.comp_eq]
|
||||
rfl
|
||||
|
||||
|
@ -140,19 +218,179 @@ lemma congrSet_refl : @congrSet d _ _ (Equiv.refl X) = Equiv.refl _ := by
|
|||
|
||||
/-!
|
||||
|
||||
## Multiplication
|
||||
## Sums
|
||||
|
||||
-/
|
||||
|
||||
/-! TODO: Following the ethos of modular operads, define multiplication of Lorentz tensors. -/
|
||||
/-- An equivalence through commuting sums between types casted from `FintypeCat.of`.-/
|
||||
def sumCommFintypeCat (X Y : FintypeCat) : FintypeCat.of (X ⊕ Y) ≃ FintypeCat.of (Y ⊕ X) :=
|
||||
Equiv.sumComm X Y
|
||||
|
||||
/-- The sum of two color maps. -/
|
||||
def sumElimIndexColor (Tc : X → Colors) (Sc : Y → Colors) :
|
||||
FintypeCat.of (X ⊕ Y) → Colors :=
|
||||
Sum.elim Tc Sc
|
||||
|
||||
/-- The symmetry property on `sumElimIndexColor`. -/
|
||||
lemma sumElimIndexColor_symm (Tc : X → Colors) (Sc : Y → Colors) : sumElimIndexColor Tc Sc =
|
||||
Equiv.piCongrLeft' _ (Equiv.sumComm X Y).symm (sumElimIndexColor Sc Tc) := by
|
||||
ext1 x
|
||||
simp_all only [Equiv.piCongrLeft'_apply, Equiv.sumComm_symm, Equiv.sumComm_apply]
|
||||
cases x <;> rfl
|
||||
|
||||
/-- The sum of two index values for different color maps. -/
|
||||
def sumElimIndexValue {X Y : FintypeCat} {TX : X → Colors} {TY : Y → Colors}
|
||||
(i : IndexValue d TX) (j : IndexValue d TY) :
|
||||
IndexValue d (sumElimIndexColor TX TY) :=
|
||||
fun c => match c with
|
||||
| Sum.inl x => i x
|
||||
| Sum.inr x => j x
|
||||
|
||||
/-- The projection of an index value on a sum of color maps to its left component. -/
|
||||
def inlIndexValue {Tc : X → Colors} {Sc : Y → Colors} (i : IndexValue d (sumElimIndexColor Tc Sc)) :
|
||||
IndexValue d Tc := fun x => i (Sum.inl x)
|
||||
|
||||
/-- The projection of an index value on a sum of color maps to its right component. -/
|
||||
def inrIndexValue {Tc : X → Colors} {Sc : Y → Colors}
|
||||
(i : IndexValue d (sumElimIndexColor Tc Sc)) :
|
||||
IndexValue d Sc := fun y => i (Sum.inr y)
|
||||
|
||||
/-- An equivalence between index values formed by commuting sums.-/
|
||||
def sumCommIndexValue {X Y : FintypeCat} (Tc : X → Colors) (Sc : Y → Colors) :
|
||||
IndexValue d (sumElimIndexColor Tc Sc) ≃ IndexValue d (sumElimIndexColor Sc Tc) :=
|
||||
(congrSetIndexValue d (sumCommFintypeCat X Y) (sumElimIndexColor Tc Sc)).trans
|
||||
(castIndexValue ((sumElimIndexColor_symm Sc Tc).symm))
|
||||
|
||||
lemma sumCommIndexValue_inlIndexValue {X Y : FintypeCat} {Tc : X → Colors} {Sc : Y → Colors}
|
||||
(i : IndexValue d (sumElimIndexColor Tc Sc)) :
|
||||
inlIndexValue (sumCommIndexValue Tc Sc i) = inrIndexValue i := rfl
|
||||
|
||||
lemma sumCommIndexValue_inrIndexValue {X Y : FintypeCat} {Tc : X → Colors} {Sc : Y → Colors}
|
||||
(i : IndexValue d (sumElimIndexColor Tc Sc)) :
|
||||
inrIndexValue (sumCommIndexValue Tc Sc i) = inlIndexValue i := rfl
|
||||
|
||||
/-- Equivalence between sets of `RealLorentzTensor` formed by commuting sums. -/
|
||||
@[simps!]
|
||||
def sumComm :
|
||||
RealLorentzTensor d (FintypeCat.of (X ⊕ Y)) ≃ RealLorentzTensor d (FintypeCat.of (Y ⊕ X)) :=
|
||||
congrSet (Equiv.sumComm X Y)
|
||||
|
||||
/-!
|
||||
|
||||
## Marked Lorentz tensors
|
||||
|
||||
To define contraction and multiplication of Lorentz tensors we need to mark indices.
|
||||
|
||||
-/
|
||||
|
||||
/-- A `RealLorentzTensor` with `n` marked indices. -/
|
||||
def Marked (d : ℕ) (X : FintypeCat) (n : ℕ) : Type :=
|
||||
RealLorentzTensor d (FintypeCat.of (X ⊕ Σ _ : Fin n, PUnit))
|
||||
|
||||
namespace Marked
|
||||
|
||||
variable {n m : ℕ}
|
||||
|
||||
/-- The marked point. -/
|
||||
def markedPoint (X : FintypeCat) (i : Fin n) : FintypeCat.of (X ⊕ Σ _ : Fin n, PUnit) :=
|
||||
Sum.inr ⟨i, PUnit.unit⟩
|
||||
|
||||
/-- The colors of unmarked indices. -/
|
||||
def unmarkedColor (T : Marked d X n) : X → Colors :=
|
||||
T.color ∘ Sum.inl
|
||||
|
||||
/-- The colors of marked indices. -/
|
||||
def markedColor (T : Marked d X n) : FintypeCat.of (Σ _ : Fin n, PUnit) → Colors :=
|
||||
T.color ∘ Sum.inr
|
||||
|
||||
/-- The index values restricted to unmarked indices. -/
|
||||
def UnmarkedIndexValue (T : Marked d X n) : Type :=
|
||||
IndexValue d T.unmarkedColor
|
||||
|
||||
/-- The index values restricted to marked indices. -/
|
||||
def MarkedIndexValue (T : Marked d X n) : Type :=
|
||||
IndexValue d T.markedColor
|
||||
|
||||
lemma sumElimIndexColor_of_marked (T : Marked d X n) :
|
||||
sumElimIndexColor T.unmarkedColor T.markedColor = T.color := by
|
||||
ext1 x
|
||||
cases' x <;> rfl
|
||||
|
||||
/-- Contruction of marked index values for the case of 1 marked index. -/
|
||||
def oneMarkedIndexValue (T : Marked d X 1) (x : ColorsIndex d (T.color (markedPoint X 0))) :
|
||||
T.MarkedIndexValue := fun i => match i with
|
||||
| ⟨0, PUnit.unit⟩ => x
|
||||
|
||||
/-- Contruction of marked index values for the case of 2 marked index. -/
|
||||
def twoMarkedIndexValue (T : Marked d X 2) (x : ColorsIndex d (T.color (markedPoint X 0)))
|
||||
(y : ColorsIndex d (T.color (markedPoint X 1))) :
|
||||
T.MarkedIndexValue := fun i =>
|
||||
match i with
|
||||
| ⟨0, PUnit.unit⟩ => x
|
||||
| ⟨1, PUnit.unit⟩ => y
|
||||
|
||||
end Marked
|
||||
|
||||
/-!
|
||||
|
||||
## Multiplication
|
||||
|
||||
-/
|
||||
open Marked
|
||||
|
||||
/-- The contraction of the marked indices of two tensors each with one marked index, which
|
||||
is dual to the others. The contraction is done via
|
||||
`φ^μ ψ_μ = φ^0 ψ_0 + φ^1 ψ_1 + ...`. -/
|
||||
@[simps!]
|
||||
def mul {X Y : FintypeCat} (T : Marked d X 1) (S : Marked d Y 1)
|
||||
(h : T.markedColor ⟨0, PUnit.unit⟩ = τ (S.markedColor ⟨0, PUnit.unit⟩)) :
|
||||
RealLorentzTensor d (FintypeCat.of (X ⊕ Y)) where
|
||||
color := sumElimIndexColor T.unmarkedColor S.unmarkedColor
|
||||
coord := fun i => ∑ x,
|
||||
T.coord (Equiv.cast (indexValue_eq d T.sumElimIndexColor_of_marked)
|
||||
(sumElimIndexValue (inlIndexValue i) (T.oneMarkedIndexValue x))) *
|
||||
S.coord (Equiv.cast (indexValue_eq d S.sumElimIndexColor_of_marked) $
|
||||
sumElimIndexValue (inrIndexValue i) (S.oneMarkedIndexValue $ congrColorsDual h x))
|
||||
|
||||
/-- Multiplication is well behaved with regard to swapping tensors. -/
|
||||
lemma sumComm_mul {X Y : FintypeCat} (T : Marked d X 1) (S : Marked d Y 1)
|
||||
(h : T.markedColor ⟨0, PUnit.unit⟩ = τ (S.markedColor ⟨0, PUnit.unit⟩)) :
|
||||
sumComm (mul T S h) = mul S T (color_eq_dual_symm h) := by
|
||||
refine ext' (sumElimIndexColor_symm S.unmarkedColor T.unmarkedColor).symm ?_
|
||||
change (mul T S h).coord ∘
|
||||
(congrSetIndexValue d (sumCommFintypeCat X Y) (mul T S h).color).symm = _
|
||||
rw [Equiv.comp_symm_eq]
|
||||
funext i
|
||||
simp only [mul_coord, IndexValue, mul_color, Function.comp_apply, sumComm_apply_color]
|
||||
erw [sumCommIndexValue_inlIndexValue, sumCommIndexValue_inrIndexValue,
|
||||
← Equiv.sum_comp (congrColorsDual h)]
|
||||
refine Fintype.sum_congr _ _ (fun a => ?_)
|
||||
rw [mul_comm]
|
||||
repeat apply congrArg
|
||||
rw [← congrColorsDual_symm h]
|
||||
exact (Equiv.apply_eq_iff_eq_symm_apply (congrColorsDual h)).mp rfl
|
||||
|
||||
/-! TODO: Following the ethos of modular operads, prove properties of multiplication. -/
|
||||
|
||||
/-! TODO: Use `mul` to generalize to any pair of marked index. -/
|
||||
/-!
|
||||
|
||||
## Contraction of indices
|
||||
|
||||
-/
|
||||
|
||||
/-! TODO: Following the ethos of modular operads, define contraction of Lorentz tensors. -/
|
||||
/-- The contraction of the marked indices in a tensor with two marked indices. -/
|
||||
def contr {X : FintypeCat} (T : Marked d X 2)
|
||||
(h : T.markedColor ⟨0, PUnit.unit⟩ = τ (T.markedColor ⟨1, PUnit.unit⟩)) :
|
||||
RealLorentzTensor d X where
|
||||
color := T.unmarkedColor
|
||||
coord := fun i =>
|
||||
∑ x, T.coord (Equiv.cast (indexValue_eq d T.sumElimIndexColor_of_marked)
|
||||
(sumElimIndexValue i (T.twoMarkedIndexValue x ((congrColorsDual h) x))))
|
||||
|
||||
/-! TODO: Following the ethos of modular operads, prove properties of contraction. -/
|
||||
|
||||
/-! TODO: Use `contr` to generalize to any pair of marked index. -/
|
||||
|
||||
/-!
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue