diff --git a/HepLean/AnomalyCancellation/PureU1/Basic.lean b/HepLean/AnomalyCancellation/PureU1/Basic.lean index d506c0a..6b17491 100644 --- a/HepLean/AnomalyCancellation/PureU1/Basic.lean +++ b/HepLean/AnomalyCancellation/PureU1/Basic.lean @@ -124,7 +124,7 @@ lemma pureU1_last {n : ℕ} (S : (PureU1 n.succ).LinSols) : rw [Fin.sum_univ_castSucc] at hS linear_combination hS -/-- Two solutions to the Linear ACCs for `n.succ` areq equal if their first `n` charges are +/-- Two solutions to the Linear ACCs for `n.succ` are equal if their first `n` charges are equal. -/ lemma pureU1_anomalyFree_ext {n : ℕ} {S T : (PureU1 n.succ).LinSols} (h : ∀ (i : Fin n), S.val i.castSucc = T.val i.castSucc) : S = T := by diff --git a/HepLean/AnomalyCancellation/SM/NoGrav/One/LinearParameterization.lean b/HepLean/AnomalyCancellation/SM/NoGrav/One/LinearParameterization.lean index 86594c4..83b5f03 100644 --- a/HepLean/AnomalyCancellation/SM/NoGrav/One/LinearParameterization.lean +++ b/HepLean/AnomalyCancellation/SM/NoGrav/One/LinearParameterization.lean @@ -61,7 +61,7 @@ lemma speciesVal (S : linearParameters) : | 3 => rfl | 4 => rfl -/-- The map from the linear paramaters to elements of `(SMNoGrav 1).LinSols`. -/ +/-- The map from the linear parameters to elements of `(SMNoGrav 1).LinSols`. -/ def asLinear (S : linearParameters) : (SMNoGrav 1).LinSols := chargeToLinear S.asCharges (by simp only [accSU2, SMSpecies_numberCharges, Finset.univ_unique, Fin.default_eq_zero, diff --git a/HepLean/BeyondTheStandardModel/TwoHDM/GaugeOrbits.lean b/HepLean/BeyondTheStandardModel/TwoHDM/GaugeOrbits.lean index aff69e8..23ed567 100644 --- a/HepLean/BeyondTheStandardModel/TwoHDM/GaugeOrbits.lean +++ b/HepLean/BeyondTheStandardModel/TwoHDM/GaugeOrbits.lean @@ -84,8 +84,8 @@ lemma prodMatrix_smooth (Φ1 Φ2 : HiggsField) : simpa only [prodMatrix, Fin.zero_eta, Fin.isValue, of_apply, cons_val', cons_val_zero, empty_val', cons_val_fin_one] using smooth_innerProd _ _ -/-- The map `prodMatrix` is invariant under the simultanous action of `gaugeAction` on the two Higgs -fields. -/ +/-- The map `prodMatrix` is invariant under the simultaneous action of `gaugeAction` on the two +Higgs fields. -/ informal_lemma prodMatrix_invariant where deps := [``prodMatrix, ``gaugeAction] diff --git a/HepLean/FlavorPhysics/CKMMatrix/Basic.lean b/HepLean/FlavorPhysics/CKMMatrix/Basic.lean index a3c1901..23df8bc 100644 --- a/HepLean/FlavorPhysics/CKMMatrix/Basic.lean +++ b/HepLean/FlavorPhysics/CKMMatrix/Basic.lean @@ -422,7 +422,7 @@ def Rcscb (V : CKMMatrix) : ℂ := [V]cs / [V]cb /-- The ratio of the `cs` and `cb` elements of a CKM matrix. -/ scoped[CKMMatrix] notation (name := cs_cb_ratio) "[" V "]cs|cb" => Rcscb V -/-- Multiplicying the ratio of the `cs` by `cb` element of a CKM matrix by the `cb` element +/-- Multiplying the ratio of the `cs` by `cb` element of a CKM matrix by the `cb` element returns the `cs` element, as long as the `cb` element is non-zero. -/ lemma Rcscb_mul_cb {V : CKMMatrix} (h : [V]cb ≠ 0) : [V]cs = Rcscb V * [V]cb := by rw [Rcscb] diff --git a/HepLean/FlavorPhysics/CKMMatrix/Invariants.lean b/HepLean/FlavorPhysics/CKMMatrix/Invariants.lean index b106c5f..a590645 100644 --- a/HepLean/FlavorPhysics/CKMMatrix/Invariants.lean +++ b/HepLean/FlavorPhysics/CKMMatrix/Invariants.lean @@ -50,8 +50,8 @@ lemma jarlskogℂCKM_equiv (V U : CKMMatrix) (h : V ≈ U) : def jarlskogℂ : Quotient CKMMatrixSetoid → ℂ := Quotient.lift jarlskogℂCKM jarlskogℂCKM_equiv -/-- An invariant for CKM mtrices corresponding to the square of the absolute values - of the `us`, `ub` and `cb` elements multipled together divided by `(VudAbs V ^ 2 + VusAbs V ^2)`. +/-- An invariant for CKM matrices corresponding to the square of the absolute values + of the `us`, `ub` and `cb` elements multiplied together divided by `(VudAbs V ^ 2 + VusAbs V ^2)`. -/ def VusVubVcdSq (V : Quotient CKMMatrixSetoid) : ℝ := VusAbs V ^ 2 * VubAbs V ^ 2 * VcbAbs V ^2 / (VudAbs V ^ 2 + VusAbs V ^2) diff --git a/HepLean/FlavorPhysics/CKMMatrix/Relations.lean b/HepLean/FlavorPhysics/CKMMatrix/Relations.lean index b254b56..480dae4 100644 --- a/HepLean/FlavorPhysics/CKMMatrix/Relations.lean +++ b/HepLean/FlavorPhysics/CKMMatrix/Relations.lean @@ -44,7 +44,7 @@ lemma fst_row_normalized_abs (V : CKMMatrix) : abs [V]ud ^ 2 + abs [V]us ^ 2 + a lemma snd_row_normalized_abs (V : CKMMatrix) : abs [V]cd ^ 2 + abs [V]cs ^ 2 + abs [V]cb ^ 2 = 1 := VAbs_sum_sq_row_eq_one ⟦V⟧ 1 -/-- The absolute value squared of the thid rwo of a CKM matrix is `1`, in terms of `abs`. -/ +/-- The absolute value squared of the third rwo of a CKM matrix is `1`, in terms of `abs`. -/ lemma thd_row_normalized_abs (V : CKMMatrix) : abs [V]td ^ 2 + abs [V]ts ^ 2 + abs [V]tb ^ 2 = 1 := VAbs_sum_sq_row_eq_one ⟦V⟧ 2 diff --git a/HepLean/Lorentz/ComplexTensor/PauliMatrices/Basic.lean b/HepLean/Lorentz/ComplexTensor/PauliMatrices/Basic.lean index 089169a..be90483 100644 --- a/HepLean/Lorentz/ComplexTensor/PauliMatrices/Basic.lean +++ b/HepLean/Lorentz/ComplexTensor/PauliMatrices/Basic.lean @@ -79,7 +79,7 @@ lemma tensorNode_pauliContrDown : {pauliContrDown | μ α β}ᵀ.tensor = -/ set_option maxRecDepth 5000 in -/-- A rearanging of `pauliCoDown` to place the pauli matrices on the right. -/ +/-- A rearranging of `pauliCoDown` to place the pauli matrices on the right. -/ lemma pauliCoDown_eq_metric_mul_pauliCo : {pauliCoDown | μ α' β' = εL' | α α' ⊗ εR' | β β' ⊗ pauliCo | μ α β}ᵀ := by conv => @@ -128,7 +128,7 @@ lemma pauliCoDown_eq_metric_mul_pauliCo : decide set_option maxRecDepth 5000 in -/-- A rearanging of `pauliContrDown` to place the pauli matrices on the right. -/ +/-- A rearranging of `pauliContrDown` to place the pauli matrices on the right. -/ lemma pauliContrDown_eq_metric_mul_pauliContr : {pauliContrDown | μ α' β' = εL' | α α' ⊗ εR' | β β' ⊗ pauliContr | μ α β}ᵀ := by diff --git a/HepLean/Lorentz/ComplexVector/Unit.lean b/HepLean/Lorentz/ComplexVector/Unit.lean index c0bec8c..6b22e57 100644 --- a/HepLean/Lorentz/ComplexVector/Unit.lean +++ b/HepLean/Lorentz/ComplexVector/Unit.lean @@ -38,7 +38,7 @@ lemma contrCoUnitVal_expand_tmul : contrCoUnitVal = rfl /-- The contra-co unit for complex lorentz vectors as a morphism - `𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ complexContr ⊗ complexCo`, manifesting the invaraince under + `𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ complexContr ⊗ complexCo`, manifesting the invariance under the `SL(2, ℂ)` action. -/ def contrCoUnit : 𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ complexContr ⊗ complexCo where hom := ModuleCat.ofHom { @@ -88,7 +88,7 @@ lemma coContrUnitVal_expand_tmul : coContrUnitVal = rfl /-- The co-contra unit for complex lorentz vectors as a morphism - `𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ complexCo ⊗ complexContr`, manifesting the invaraince under + `𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ complexCo ⊗ complexContr`, manifesting the invariance under the `SL(2, ℂ)` action. -/ def coContrUnit : 𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ complexCo ⊗ complexContr where hom := ModuleCat.ofHom { diff --git a/HepLean/Lorentz/Group/Orthochronous.lean b/HepLean/Lorentz/Group/Orthochronous.lean index 5a725fe..82dcf50 100644 --- a/HepLean/Lorentz/Group/Orthochronous.lean +++ b/HepLean/Lorentz/Group/Orthochronous.lean @@ -29,7 +29,7 @@ open Lorentz.Contr /-- A Lorentz transformation is `orthochronous` if its `0 0` element is non-negative. -/ def IsOrthochronous : Prop := 0 ≤ Λ.1 (Sum.inl 0) (Sum.inl 0) -/-- A Lorentz transformation is `orthochronous` if and only if its fist column is +/-- A Lorentz transformation is `orthochronous` if and only if its first column is future pointing. -/ lemma IsOrthochronous_iff_futurePointing : IsOrthochronous Λ ↔ toNormOne Λ ∈ NormOne.FuturePointing d := by @@ -66,7 +66,7 @@ def timeCompCont : C(LorentzGroup d, ℝ) := ⟨fun Λ => Λ.1 (Sum.inl 0) (Sum. /-- An auxiliary function used in the definition of `orthchroMapReal`. This function takes all elements of `ℝ` less then `-1` to `-1`, - all elements of `R` geater then `1` to `1` and peserves all other elements. -/ + all elements of `R` greater then `1` to `1` and preserves all other elements. -/ def stepFunction : ℝ → ℝ := fun t => if t ≤ -1 then -1 else if 1 ≤ t then 1 else t @@ -152,7 +152,7 @@ lemma mul_othchron_of_not_othchron_not_othchron {Λ Λ' : LorentzGroup d} (h : exact NormOne.FuturePointing.metric_reflect_not_mem_not_mem h h' /-- The product of an orthochronous Lorentz transformations with a - non-orthochronous Loentz transformation is not orthochronous. -/ + non-orthochronous Lorentz transformation is not orthochronous. -/ lemma mul_not_othchron_of_othchron_not_othchron {Λ Λ' : LorentzGroup d} (h : IsOrthochronous Λ) (h' : ¬ IsOrthochronous Λ') : ¬ IsOrthochronous (Λ * Λ') := by rw [not_orthochronous_iff_le_zero, LorentzGroup.inl_inl_mul] @@ -161,7 +161,7 @@ lemma mul_not_othchron_of_othchron_not_othchron {Λ Λ' : LorentzGroup d} (h : I exact NormOne.FuturePointing.metric_reflect_mem_not_mem h h' /-- The product of a non-orthochronous Lorentz transformations with an - orthochronous Loentz transformation is not orthochronous. -/ + orthochronous Lorentz transformation is not orthochronous. -/ lemma mul_not_othchron_of_not_othchron_othchron {Λ Λ' : LorentzGroup d} (h : ¬ IsOrthochronous Λ) (h' : IsOrthochronous Λ') : ¬ IsOrthochronous (Λ * Λ') := by rw [not_orthochronous_iff_le_zero, LorentzGroup.inl_inl_mul] diff --git a/HepLean/Lorentz/MinkowskiMatrix.lean b/HepLean/Lorentz/MinkowskiMatrix.lean index 149d040..14f015d 100644 --- a/HepLean/Lorentz/MinkowskiMatrix.lean +++ b/HepLean/Lorentz/MinkowskiMatrix.lean @@ -29,7 +29,7 @@ variable {d : ℕ} /-- Notation for `minkowskiMatrix`. -/ scoped[minkowskiMatrix] notation "η" => minkowskiMatrix -/-- The Minkowski matrix is self-inveting. -/ +/-- The Minkowski matrix is self-inverting. -/ @[simp] lemma sq : @minkowskiMatrix d * minkowskiMatrix = 1 := by simp only [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, diagonal_mul_diagonal] @@ -55,8 +55,8 @@ lemma sq : @minkowskiMatrix d * minkowskiMatrix = 1 := by lemma eq_transpose : minkowskiMatrixᵀ = @minkowskiMatrix d := by simp only [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, diagonal_transpose] -/-- The deteminant of the Minkowski matrix is equal to `-1` to the power - of the number of spactial dimensions. -/ +/-- The determinant of the Minkowski matrix is equal to `-1` to the power + of the number of spatial dimensions. -/ @[simp] lemma det_eq_neg_one_pow_d : (@minkowskiMatrix d).det = (- 1) ^ d := by simp [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal] @@ -68,7 +68,7 @@ lemma η_apply_mul_η_apply_diag (μ : Fin 1 ⊕ Fin d) : η μ μ * η μ μ = | Sum.inl _ => simp [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal] | Sum.inr _ => simp [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal] -/-- The Minkowski matix as a block matrix. -/ +/-- The Minkowski matrix as a block matrix. -/ lemma as_block : @minkowskiMatrix d = Matrix.fromBlocks (1 : Matrix (Fin 1) (Fin 1) ℝ) 0 0 (-1 : Matrix (Fin d) (Fin d) ℝ) := by rw [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, ← fromBlocks_diagonal] diff --git a/HepLean/Lorentz/PauliMatrices/SelfAdjoint.lean b/HepLean/Lorentz/PauliMatrices/SelfAdjoint.lean index 3fabdbd..8bb7651 100644 --- a/HepLean/Lorentz/PauliMatrices/SelfAdjoint.lean +++ b/HepLean/Lorentz/PauliMatrices/SelfAdjoint.lean @@ -301,7 +301,7 @@ lemma σSAL_span : ⊤ ≤ Submodule.span ℝ (Set.range σSAL') := by def σSAL : Basis (Fin 1 ⊕ Fin 3) ℝ (selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) := Basis.mk σSAL_linearly_independent σSAL_span -/-- The decomposition of a self-adjint matrix into the Pauli matrices (where `σi` are negated). -/ +/-- The decomposition of a self-adjoint matrix into the Pauli matrices (where `σi` are negated). -/ lemma σSAL_decomp (M : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) : M = (1/2 * (Matrix.trace (σ0 * M.1)).re) • σSAL (Sum.inl 0) + (-1/2 * (Matrix.trace (σ1 * M.1)).re) • σSAL (Sum.inr 0) diff --git a/HepLean/Lorentz/SL2C/SelfAdjoint.lean b/HepLean/Lorentz/SL2C/SelfAdjoint.lean index e843638..c4864da 100644 --- a/HepLean/Lorentz/SL2C/SelfAdjoint.lean +++ b/HepLean/Lorentz/SL2C/SelfAdjoint.lean @@ -175,7 +175,7 @@ lemma toSelfAdjointMap_det_one' {M : ℂ²ˣ²} (hM : M.IsUpperTriangular) (detM _ = 1 := by rw [hE]; simp [detD_one, detA_one] /-- This promotes `Lorentz.SL2C.toSelfAdjointMap M` and its definitional equivalence, -`Lorentz.SL2C.toSelfAdjointMap' M`, to a linear equivalence by recognising the linear inverse to be +`Lorentz.SL2C.toSelfAdjointMap' M`, to a linear equivalence by recognizing the linear inverse to be `Lorentz.SL2C.toSelfAdjointMap M⁻¹`, i.e., `Lorentz.SL2C.toSelfAdjointMap' M⁻¹`. -/ noncomputable def toSelfAdjointEquiv (M : ℂ²ˣ²) [Invertible M] : ℍ₂ ≃ₗ[ℝ] ℍ₂ where toLinearMap := toSelfAdjointMap' M diff --git a/HepLean/Lorentz/Weyl/Contraction.lean b/HepLean/Lorentz/Weyl/Contraction.lean index 0805deb..a5c31c4 100644 --- a/HepLean/Lorentz/Weyl/Contraction.lean +++ b/HepLean/Lorentz/Weyl/Contraction.lean @@ -174,11 +174,11 @@ lemma altLeftContraction_basis (i j : Fin 2) : exact Eq.propIntro (fun a => id (Eq.symm a)) fun a => id (Eq.symm a) /-- -The linear map from rightHandedWeyl ⊗ altRightHandedWeyl to ℂ given by - summing over components of rightHandedWeyl and altRightHandedWeyl in the +The linear map from `rightHandedWeyl ⊗ altRightHandedWeyl` to `ℂ` given by + summing over components of `rightHandedWeyl` and `altRightHandedWeyl` in the standard basis (i.e. the dot product). The contraction of a right-handed Weyl fermion with a left-handed Weyl fermion. - In index notation this is ψ^{dot a} φ_{dot a}. + In index notation this is `ψ^{dot a} φ_{dot a}`. -/ def rightAltContraction : rightHanded ⊗ altRightHanded ⟶ 𝟙_ (Rep ℂ SL(2,ℂ)) where hom := ModuleCat.ofHom <| TensorProduct.lift rightAltBi diff --git a/HepLean/Meta/Remark/Properties.lean b/HepLean/Meta/Remark/Properties.lean index 374d24f..820843a 100644 --- a/HepLean/Meta/Remark/Properties.lean +++ b/HepLean/Meta/Remark/Properties.lean @@ -13,7 +13,7 @@ namespace HepLean open Lean variable {m} [Monad m] [MonadEnv m] [MonadError m] -/-- All remarks in the enviroment. -/ +/-- All remarks in the environment. -/ def allRemarkInfo : m (Array RemarkInfo) := do let env ← getEnv return remarkExtension.getState env diff --git a/HepLean/PerturbationTheory/FeynmanDiagrams/Momentum.lean b/HepLean/PerturbationTheory/FeynmanDiagrams/Momentum.lean index 662ff88..9c908fc 100644 --- a/HepLean/PerturbationTheory/FeynmanDiagrams/Momentum.lean +++ b/HepLean/PerturbationTheory/FeynmanDiagrams/Momentum.lean @@ -44,7 +44,7 @@ We define the direct sum of the edge and vertex momentum spaces. -/ -/-- The type which assocaites to each half-edge a `1`-dimensional vector space. +/-- The type which associates to each half-edge a `1`-dimensional vector space. Corresponding to that spanned by its momentum. -/ def HalfEdgeMomenta : Type := F.𝓱𝓔 → ℝ @@ -89,7 +89,7 @@ instance : AddCommGroup F.EdgeMomenta := Pi.addCommGroup /-- The edge momenta form a module over `ℝ`. -/ instance : Module ℝ F.EdgeMomenta := Pi.module _ _ _ -/-- The type which assocaites to each ege a `1`-dimensional vector space. +/-- The type which associates to each ege a `1`-dimensional vector space. Corresponding to that spanned by its total inflowing momentum. -/ def VertexMomenta : Type := F.𝓥 → ℝ diff --git a/HepLean/PerturbationTheory/FieldOpAlgebra/NormalOrder/Lemmas.lean b/HepLean/PerturbationTheory/FieldOpAlgebra/NormalOrder/Lemmas.lean index 3e723bf..9e3bbd8 100644 --- a/HepLean/PerturbationTheory/FieldOpAlgebra/NormalOrder/Lemmas.lean +++ b/HepLean/PerturbationTheory/FieldOpAlgebra/NormalOrder/Lemmas.lean @@ -224,7 +224,7 @@ For a field specification `𝓕`, an element `φ` of `𝓕.CrAnFieldOp`, a list `[φ, 𝓝(φ₀…φₙ)]ₛ = ∑ i, 𝓢(φ, φ₀…φᵢ₋₁) • [φ, φᵢ]ₛ * 𝓝(φ₀…φᵢ₋₁φᵢ₊₁…φₙ)`. -The proof of this result ultimetly goes as follows +The proof of this result ultimately goes as follows - The definition of `normalOrder` is used to rewrite `𝓝(φ₀…φₙ)` as a scalar multiple of a `ofCrAnList φsn` where `φsn` is the normal ordering of `φ₀…φₙ`. - `superCommuteF_ofCrAnListF_ofCrAnListF_eq_sum` is used to rewrite the super commutator of `φ` @@ -348,7 +348,7 @@ For a field specification `𝓕`, a `φ` in `𝓕.FieldOp` and a list `φs` of ` the following relation holds in the algebra `𝓕.FieldOpAlgebra`, `φ * 𝓝(φ₀φ₁…φₙ) = 𝓝(φφ₀φ₁…φₙ) + ∑ i, (𝓢(φ,φ₀φ₁…φᵢ₋₁) • [anPart φ, φᵢ]ₛ) * 𝓝(φ₀φ₁…φᵢ₋₁φᵢ₊₁…φₙ)`. -The proof of ultimetly goes as follows: +The proof of ultimately goes as follows: - `ofFieldOp_eq_crPart_add_anPart` is used to split `φ` into its creation and annihilation parts. - The fact that `crPart φ * 𝓝(φ₀φ₁…φₙ) = 𝓝(crPart φ * φ₀φ₁…φₙ)` is used. - The fact that `anPart φ * 𝓝(φ₀φ₁…φₙ)` is diff --git a/HepLean/PerturbationTheory/FieldOpAlgebra/TimeOrder.lean b/HepLean/PerturbationTheory/FieldOpAlgebra/TimeOrder.lean index 250c2ca..f28070d 100644 --- a/HepLean/PerturbationTheory/FieldOpAlgebra/TimeOrder.lean +++ b/HepLean/PerturbationTheory/FieldOpAlgebra/TimeOrder.lean @@ -434,7 +434,7 @@ lemma timeOrder_ofFieldOpList_singleton (φ : 𝓕.FieldOp) : list of `𝓕.FieldOp`, `𝓣(φ₀…φₙ)`, is equal to `𝓢(φᵢ,φ₀…φᵢ₋₁) • φᵢ * 𝓣(φ₀…φᵢ₋₁φᵢ₊₁φₙ)` where `φᵢ` is the maximal time field in `φ₀…φₙ`. - The proof of this result ultimitley relies on basic properties of ordering and signs. -/ + The proof of this result ultimately relies on basic properties of ordering and signs. -/ lemma timeOrder_eq_maxTimeField_mul_finset (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) : 𝓣(ofFieldOpList (φ :: φs)) = 𝓢(𝓕 |>ₛ maxTimeField φ φs, 𝓕 |>ₛ ⟨(eraseMaxTimeField φ φs).get, (Finset.univ.filter (fun x => diff --git a/HepLean/PerturbationTheory/FieldOpAlgebra/Universality.lean b/HepLean/PerturbationTheory/FieldOpAlgebra/Universality.lean index a2ca332..ca5eb42 100644 --- a/HepLean/PerturbationTheory/FieldOpAlgebra/Universality.lean +++ b/HepLean/PerturbationTheory/FieldOpAlgebra/Universality.lean @@ -75,7 +75,7 @@ lemma universalLift_ι {A : Type} [Semiring A] [Algebra ℂ A] (f : 𝓕.CrAnFie universalLift f h1 (ι a) = FreeAlgebra.lift ℂ f a := by rfl /-- -For a field specification, `𝓕`, the algebra `𝓕.FieldOpAlgebra` satifies the following universal +For a field specification, `𝓕`, the algebra `𝓕.FieldOpAlgebra` satisfies the following universal property. Let `f : 𝓕.CrAnFieldOp → A` be a function and `g : 𝓕.FieldOpFreeAlgebra →ₐ[ℂ] A` the universal lift of that function associated with the free algebra `𝓕.FieldOpFreeAlgebra`. If `g` is zero on the ideal defining `𝓕.FieldOpAlgebra`, then there is a unique diff --git a/HepLean/PerturbationTheory/FieldOpFreeAlgebra/Basic.lean b/HepLean/PerturbationTheory/FieldOpFreeAlgebra/Basic.lean index 94550d0..ff292f8 100644 --- a/HepLean/PerturbationTheory/FieldOpFreeAlgebra/Basic.lean +++ b/HepLean/PerturbationTheory/FieldOpFreeAlgebra/Basic.lean @@ -55,7 +55,7 @@ def ofCrAnOpF (φ : 𝓕.CrAnFieldOp) : FieldOpFreeAlgebra 𝓕 := The algebra `𝓕.FieldOpFreeAlgebra` satisfies the universal property that for any other algebra `A` (e.g. the operator algebra of the theory) with a map `f : 𝓕.CrAnFieldOp → A` (e.g. the inclusion of the creation and annihilation parts of field operators into the - operator algebra) there is a unqiue algebra map `g : 𝓕.FieldOpFreeAlgebra → A` + operator algebra) there is a unique algebra map `g : 𝓕.FieldOpFreeAlgebra → A` such that `g ∘ ofCrAnOpF = f`. The unique `g` is given by `FreeAlgebra.lift ℂ f`. @@ -141,7 +141,7 @@ lemma ofFieldOpListF_sum (φs : List 𝓕.FieldOp) : -/ -/-- The algebra map taking an element of the free-state algbra to +/-- The algebra map taking an element of the free-state algebra to the part of it in the creation and annihilation free algebra spanned by creation operators. -/ def crPartF : 𝓕.FieldOp → 𝓕.FieldOpFreeAlgebra := fun φ => @@ -166,7 +166,7 @@ lemma crPartF_posAsymp (φ : (Σ f, 𝓕.AsymptoticLabel f) × (Fin 3 → ℝ)) crPartF (FieldOp.outAsymp φ) = 0 := by simp [crPartF] -/-- The algebra map taking an element of the free-state algbra to +/-- The algebra map taking an element of the free-state algebra to the part of it in the creation and annihilation free algebra spanned by annihilation operators. -/ def anPartF : 𝓕.FieldOp → 𝓕.FieldOpFreeAlgebra := fun φ => diff --git a/HepLean/PerturbationTheory/FieldSpecification/CrAnFieldOp.lean b/HepLean/PerturbationTheory/FieldSpecification/CrAnFieldOp.lean index ef3c3b1..2d56cf3 100644 --- a/HepLean/PerturbationTheory/FieldSpecification/CrAnFieldOp.lean +++ b/HepLean/PerturbationTheory/FieldSpecification/CrAnFieldOp.lean @@ -34,7 +34,7 @@ In this module in addition to defining `CrAnFieldOp` we also define some maps: namespace FieldSpecification variable (𝓕 : FieldSpecification) -/-- To each field operator the specificaition of the type of creation and annihilation parts. +/-- To each field operator the specification of the type of creation and annihilation parts. For asymptotic states there is only one allowed part, whilst for position field operator there is two. -/ def fieldOpToCrAnType : 𝓕.FieldOp → Type @@ -92,7 +92,7 @@ def crAnFieldOpToCreateAnnihilate : 𝓕.CrAnFieldOp → CreateAnnihilate /-- For a field specification `𝓕`, and an element `φ` in `𝓕.CrAnFieldOp`, the field statistic `crAnStatistics φ` is defined to be the statistic associated with the field `𝓕.Field` - (or equivalently `𝓕.FieldOp`) underlying `φ`. + (or `𝓕.FieldOp`) underlying `φ`. The following notation is used in relation to `crAnStatistics`: - For `φ` an element of `𝓕.CrAnFieldOp`, `𝓕 |>ₛ φ` is `crAnStatistics φ`. diff --git a/HepLean/PerturbationTheory/FieldStatistics/Basic.lean b/HepLean/PerturbationTheory/FieldStatistics/Basic.lean index e9e7e5c..9639ade 100644 --- a/HepLean/PerturbationTheory/FieldStatistics/Basic.lean +++ b/HepLean/PerturbationTheory/FieldStatistics/Basic.lean @@ -291,7 +291,7 @@ lemma ofList_take_insertIdx_le (n m : ℕ) (φ1 : 𝓕) (φs : List 𝓕) (hn : · exact hn · exact hm -/-- The instance of an addative monoid on `FieldStatistic`. -/ +/-- The instance of an additive monoid on `FieldStatistic`. -/ instance : AddMonoid FieldStatistic where zero := bosonic add a b := a * b diff --git a/HepLean/PerturbationTheory/WickContraction/InsertAndContract.lean b/HepLean/PerturbationTheory/WickContraction/InsertAndContract.lean index 167f74e..93d67b9 100644 --- a/HepLean/PerturbationTheory/WickContraction/InsertAndContract.lean +++ b/HepLean/PerturbationTheory/WickContraction/InsertAndContract.lean @@ -34,7 +34,7 @@ open HepLean.Fin of `φ` (at position `i`) with the new position of `j` after `φ` is added. In other words, `φsΛ.insertAndContract φ i j` is formed by adding `φ` to `φs` at position `i`, - and contracting `φ` with the field orginally at position `j` if `j` is not none. + and contracting `φ` with the field originally at position `j` if `j` is not none. The notation `φsΛ ↩Λ φ i j` is used to denote `φsΛ.insertAndContract φ i j`. -/ def insertAndContract {φs : List 𝓕.FieldOp} (φ : 𝓕.FieldOp) (φsΛ : WickContraction φs.length) diff --git a/HepLean/PerturbationTheory/WickContraction/Sign/InsertSome.lean b/HepLean/PerturbationTheory/WickContraction/Sign/InsertSome.lean index 52699a8..caa16fc 100644 --- a/HepLean/PerturbationTheory/WickContraction/Sign/InsertSome.lean +++ b/HepLean/PerturbationTheory/WickContraction/Sign/InsertSome.lean @@ -201,7 +201,7 @@ lemma signFinset_insertAndContract_some (φ : 𝓕.FieldOp) (φs : List 𝓕.Fie rw [Fin.succAbove_lt_succAbove_iff] /-- -Given a Wick contraction `φsΛ` the sign defined in the followin way, +Given a Wick contraction `φsΛ` the sign defined in the following way, related to inserting a field `φ` at position `i` and contracting it with `j : φsΛ.uncontracted`. - For each contracted pair `{a1, a2}` in `φsΛ` with `a1 < a2` the sign `𝓢(φ, φₐ₂)` if `a₁ < i ≤ a₂` and `a₁ < j`. @@ -220,7 +220,7 @@ def signInsertSomeProd (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (φsΛ : Wi else 1 -/-- Given a Wick contraction `φsΛ` the sign defined in the followin way, +/-- Given a Wick contraction `φsΛ` the sign defined in the following way, related to inserting a field `φ` at position `i` and contracting it with `j : φsΛ.uncontracted`. - If `j < i`, for each field `φₐ` in `φⱼ₊₁…φᵢ₋₁` without a dual at position `< j` the sign `𝓢(φₐ, φᵢ)`. diff --git a/HepLean/PerturbationTheory/WickContraction/SubContraction.lean b/HepLean/PerturbationTheory/WickContraction/SubContraction.lean index 6378c7e..3342c14 100644 --- a/HepLean/PerturbationTheory/WickContraction/SubContraction.lean +++ b/HepLean/PerturbationTheory/WickContraction/SubContraction.lean @@ -21,7 +21,7 @@ open HepLean.List open FieldOpAlgebra /-- Given a Wick contraction `φsΛ`, and a subset of `φsΛ.1`, the Wick contraction - conisting of contracted pairs within that subset. -/ + consisting of contracted pairs within that subset. -/ def subContraction (S : Finset (Finset (Fin φs.length))) (ha : S ⊆ φsΛ.1) : WickContraction φs.length := ⟨S, by diff --git a/HepLean/PerturbationTheory/WickContraction/TimeCond.lean b/HepLean/PerturbationTheory/WickContraction/TimeCond.lean index 2480677..4cc6e70 100644 --- a/HepLean/PerturbationTheory/WickContraction/TimeCond.lean +++ b/HepLean/PerturbationTheory/WickContraction/TimeCond.lean @@ -314,7 +314,7 @@ lemma empty_not_haveEqTime {φs : List 𝓕.FieldOp} : rw [haveEqTime_iff_finset] simp [empty] -/-- Given a Wick contraction the subset of contracted pairs between eqaul time fields. -/ +/-- Given a Wick contraction the subset of contracted pairs between equal time fields. -/ def eqTimeContractSet {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) : Finset (Finset (Fin φs.length)) := Finset.univ.filter (fun a => diff --git a/HepLean/StandardModel/Basic.lean b/HepLean/StandardModel/Basic.lean index 8951e88..1e09493 100644 --- a/HepLean/StandardModel/Basic.lean +++ b/HepLean/StandardModel/Basic.lean @@ -52,7 +52,7 @@ See https://math.ucr.edu/home/baez/guts.pdf informal_definition gaugeGroupℤ₂SubGroup where deps := [``GaugeGroupI, ``StandardModel.gaugeGroupℤ₆SubGroup] -/-- The guage group of the Standard Model with a ℤ₂ quotient, i.e., the quotient of `GaugeGroupI` by +/-- The gauge group of the Standard Model with a ℤ₂ quotient, i.e., the quotient of `GaugeGroupI` by the ℤ₂-subgroup `gaugeGroupℤ₂SubGroup`. See https://math.ucr.edu/home/baez/guts.pdf @@ -69,7 +69,7 @@ See https://math.ucr.edu/home/baez/guts.pdf informal_definition gaugeGroupℤ₃SubGroup where deps := [``GaugeGroupI, ``StandardModel.gaugeGroupℤ₆SubGroup] -/-- The guage group of the Standard Model with a ℤ₃-quotient, i.e., the quotient of `GaugeGroupI` by +/-- The gauge group of the Standard Model with a ℤ₃-quotient, i.e., the quotient of `GaugeGroupI` by the ℤ₃-subgroup `gaugeGroupℤ₃SubGroup`. See https://math.ucr.edu/home/baez/guts.pdf diff --git a/HepLean/StandardModel/HiggsBoson/GaugeAction.lean b/HepLean/StandardModel/HiggsBoson/GaugeAction.lean index 9fab2b4..0c2a714 100644 --- a/HepLean/StandardModel/HiggsBoson/GaugeAction.lean +++ b/HepLean/StandardModel/HiggsBoson/GaugeAction.lean @@ -118,7 +118,7 @@ lemma rotateMatrix_det {φ : HiggsVec} (hφ : φ ≠ 0) : (rotateMatrix φ).det simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add, Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm, add_comm] -/-- The `rotateMatrix` for a non-zero Higgs vector is untitary. -/ +/-- The `rotateMatrix` for a non-zero Higgs vector is unitary. -/ lemma rotateMatrix_unitary {φ : HiggsVec} (hφ : φ ≠ 0) : (rotateMatrix φ) ∈ unitaryGroup (Fin 2) ℂ := by rw [mem_unitaryGroup_iff', rotateMatrix_star, rotateMatrix] @@ -148,15 +148,15 @@ lemma rotateMatrix_specialUnitary {φ : HiggsVec} (hφ : φ ≠ 0) : /-- Given a Higgs vector, an element of the gauge group which puts the first component of the vector to zero, and the second component to a real number. -/ -def rotateGuageGroup {φ : HiggsVec} (hφ : φ ≠ 0) : GaugeGroupI := +def rotateGaugeGroup {φ : HiggsVec} (hφ : φ ≠ 0) : GaugeGroupI := ⟨1, ⟨(rotateMatrix φ), rotateMatrix_specialUnitary hφ⟩, 1⟩ /-- Acting on a non-zero Higgs vector with its rotation matrix gives a vector which is zero in the first component and a positive real in the second component. -/ -lemma rotateGuageGroup_apply {φ : HiggsVec} (hφ : φ ≠ 0) : - rep (rotateGuageGroup hφ) φ = ![0, Complex.ofRealHom ‖φ‖] := by +lemma rotateGaugeGroup_apply {φ : HiggsVec} (hφ : φ ≠ 0) : + rep (rotateGaugeGroup hφ) φ = ![0, Complex.ofRealHom ‖φ‖] := by rw [rep_apply] - simp only [rotateGuageGroup, rotateMatrix, one_pow, one_smul, + simp only [rotateGaugeGroup, rotateMatrix, one_pow, one_smul, Nat.succ_eq_add_one, Nat.reduceAdd, ofRealHom_eq_coe] ext i fin_cases i @@ -184,8 +184,8 @@ theorem rotate_fst_zero_snd_real (φ : HiggsVec) : norm_zero] ext i fin_cases i <;> rfl - · use rotateGuageGroup h - exact rotateGuageGroup_apply h + · use rotateGaugeGroup h + exact rotateGaugeGroup_apply h /-- For every Higgs vector there exists an element of the gauge group which rotates that Higgs vector to have `0` in the second component and be a non-negative real in the first diff --git a/HepLean/StandardModel/HiggsBoson/Potential.lean b/HepLean/StandardModel/HiggsBoson/Potential.lean index 775b8e3..504165e 100644 --- a/HepLean/StandardModel/HiggsBoson/Potential.lean +++ b/HepLean/StandardModel/HiggsBoson/Potential.lean @@ -120,7 +120,7 @@ lemma toFun_eq_zero_iff (h : P.𝓵 ≠ 0) (φ : HiggsField) (x : SpaceTime) : -/ -/-- The discrimiant of the quadratic equation formed by the Higgs potential. -/ +/-- The discriminant of the quadratic equation formed by the Higgs potential. -/ def quadDiscrim (φ : HiggsField) (x : SpaceTime) : ℝ := discrim P.𝓵 (- P.μ2) (- P.toFun φ x) /-- The discriminant of the quadratic formed by the potential is non-negative. -/ @@ -325,7 +325,7 @@ lemma isBounded_of_𝓵_pos (h : 0 < P.𝓵) : P.IsBounded := by /-- When there is no quartic coupling, the potential is bounded iff the mass squared is non-positive, i.e., for `P : Potential` then `P.IsBounded` iff `P.μ2 ≤ 0`. That is to say -`- P.μ2 * ‖φ‖_H^2 x` is bounded below ifff `P.μ2 ≤ 0`. -/ +`- P.μ2 * ‖φ‖_H^2 x` is bounded below iff `P.μ2 ≤ 0`. -/ informal_lemma isBounded_iff_of_𝓵_zero where deps := [`StandardModel.HiggsField.Potential.IsBounded, `StandardModel.HiggsField.Potential] diff --git a/HepLean/Tensors/OverColor/Iso.lean b/HepLean/Tensors/OverColor/Iso.lean index 4ad7b45..d2cbbf2 100644 --- a/HepLean/Tensors/OverColor/Iso.lean +++ b/HepLean/Tensors/OverColor/Iso.lean @@ -90,7 +90,7 @@ lemma equivToIso_mkIso_inv {c1 c2 : X → C} (h : c1 = c2) : Hom.toEquiv (mkIso h).inv = Equiv.refl _ := by rfl -/-- The homorophism from `mk c` to `mk c1` obtaied by an equivalence and +/-- The morphism from `mk c` to `mk c1` obtained by an equivalence and an equality lemma. -/ def equivToHomEq {c : X → C} {c1 : Y → C} (e : X ≃ Y) (h : ∀ x, c1 x = (c ∘ e.symm) x := by decide) : mk c ⟶ mk c1 := diff --git a/HepLean/Tensors/TensorSpecies/Basic.lean b/HepLean/Tensors/TensorSpecies/Basic.lean index 8bbbada..2054c58 100644 --- a/HepLean/Tensors/TensorSpecies/Basic.lean +++ b/HepLean/Tensors/TensorSpecies/Basic.lean @@ -93,13 +93,13 @@ open OverColor variable (S : TensorSpecies) -/-- The field `k` of a TensorSpecies has the instance of a commutative ring. -/ +/-- The field `k` of a `TensorSpecies` has the instance of a commutative ring. -/ instance : CommRing S.k := S.k_commRing -/-- The field `G` of a TensorSpecies has the instance of a group. -/ +/-- The field `G` of a `TensorSpecies` has the instance of a group. -/ instance : Group S.G := S.G_group -/-- The field `repDim` of a TensorSpecies is non-zero for all colors. -/ +/-- The field `repDim` of a `TensorSpecies` is non-zero for all colors. -/ instance (c : S.C) : NeZero (S.repDim c) := S.repDim_neZero c /-- The lift of the functor `S.F` to functor. -/ diff --git a/HepLean/Tensors/TensorSpecies/UnitTensor.lean b/HepLean/Tensors/TensorSpecies/UnitTensor.lean index 4160f18..d6496ba 100644 --- a/HepLean/Tensors/TensorSpecies/UnitTensor.lean +++ b/HepLean/Tensors/TensorSpecies/UnitTensor.lean @@ -97,7 +97,7 @@ lemma unitTensor_eq_dual_perm (c : S.C) : {S.unitTensor c | μ ν}ᵀ.tensor = exact congrFun (congrArg (fun f => f.toFun) hg) _ /-- The unit tensor of the dual of a color `c` is equal to the unit tensor of `c` - with indicees permuted. -/ + with indices permuted. -/ lemma dual_unitTensor_eq_perm (c : S.C) : {S.unitTensor (S.τ c) | ν μ}ᵀ.tensor = ({S.unitTensor c | μ ν}ᵀ |> perm (OverColor.equivToHomEq (finMapToEquiv ![1, 0] ![1, 0]) diff --git a/HepLean/Tensors/Tree/NodeIdentities/Basic.lean b/HepLean/Tensors/Tree/NodeIdentities/Basic.lean index ce9dc19..e4f6fd3 100644 --- a/HepLean/Tensors/Tree/NodeIdentities/Basic.lean +++ b/HepLean/Tensors/Tree/NodeIdentities/Basic.lean @@ -125,7 +125,7 @@ lemma perm_eq_id {n : ℕ} {c : Fin n → S.C} (σ : (OverColor.mk c) ⟶ (OverC simp [perm_tensor, h] /-- Given an equality of tensors corresponding to tensor trees where the tensor tree on the - left finishes with a premotion node, this permutation node can be moved to the + left finishes with a permutation node, this permutation node can be moved to the tensor tree on the right. This lemma holds here for isomorphisms only, but holds in practice more generally. -/ lemma perm_eq_of_eq_perm {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C} diff --git a/scripts/README.md b/scripts/README.md index 6a49ffb..0f9bf94 100644 --- a/scripts/README.md +++ b/scripts/README.md @@ -1,91 +1,91 @@ -# Scripts associated with HepLean +# Scripts associated with HepLean ## lint-style.py and lint-style.sh -Taken from Mathlib's linters. These perform text-based linting of the code. +Taken from Mathlib's linters. These perform text-based linting of the code. These are to be slowly replaced with code written in Lean. ## hepLean_style_lint -Checks the following in HepLean -- There are no double empty lines. -- There are no non-initial double spaces. +Checks the following in HepLean +- There are no double empty lines. +- There are no non-initial double spaces. Passing this linter is currently not required to pass CI on github. -Run using +Run using ``` lake exe hepLean_style_lint ``` -## check_file_imports.lean +## check_file_imports.lean -Checks all files are correctly imported into `HepLean.lean`. +Checks all files are correctly imported into `HepLean.lean`. -Run using +Run using ``` lake exe check_file_imports ``` ## type_former_lint.lean -Checks whether the name of definitions which form a type or prop starts with a capital letter. +Checks whether the name of definitions which form a type or prop starts with a capital letter. -Run using +Run using ``` lake exe type_former_lint ``` -## stats.sh +## stats.sh -Outputs statistics for HepLean. +Outputs statistics for HepLean. -Run using +Run using ``` lake exe stats ``` -## openAI_doc_check.lean +## openAI_doc_check.lean -Uses openAI's API to check for spelling mistakes etc. in doc strings. +Uses openAI's API to check for spelling mistakes etc. in doc strings. -This code needs `https://github.com/jstoobysmith/Lean_llm_fork` to be installed. +This code needs `https://github.com/jstoobysmith/Lean_llm_fork` to be installed. -It also needs the enviroment variable `OPENAI_API_KEY` defined using e.g. +It also needs the environment variable `OPENAI_API_KEY` defined using e.g. ``` export OPENAI_API_KEY= ``` -Run on a specific file using +Run on a specific file using ``` lake exe openAI_doc_check ``` -where `` is e.g. `HepLean.SpaceTime.Basic`. +where `` is e.g. `HepLean.SpaceTime.Basic`. -Run on a random file using +Run on a random file using ``` lake exe openAI_doc_check random ``` -## lint-all.sh +## lint-all.sh -Performs all linting checks on HepLean. +Performs all linting checks on HepLean. -Run using +Run using ``` ./scripts/lint-all.sh ``` ## Other useful commands -- To build HepLean use +- To build HepLean use ``` -lake exe cache get +lake exe cache get lake build ``` -- To update HepLean's dependencies use +- To update HepLean's dependencies use ``` lake update -``` \ No newline at end of file +```