refactor: Spellings

This commit is contained in:
jstoobysmith 2025-02-08 13:07:54 +00:00
parent 4cd71f5ec6
commit 4a55351b72
33 changed files with 88 additions and 88 deletions

View file

@ -29,7 +29,7 @@ open Lorentz.Contr
/-- A Lorentz transformation is `orthochronous` if its `0 0` element is non-negative. -/
def IsOrthochronous : Prop := 0 ≤ Λ.1 (Sum.inl 0) (Sum.inl 0)
/-- A Lorentz transformation is `orthochronous` if and only if its fist column is
/-- A Lorentz transformation is `orthochronous` if and only if its first column is
future pointing. -/
lemma IsOrthochronous_iff_futurePointing :
IsOrthochronous Λ ↔ toNormOne Λ ∈ NormOne.FuturePointing d := by
@ -66,7 +66,7 @@ def timeCompCont : C(LorentzGroup d, ) := ⟨fun Λ => Λ.1 (Sum.inl 0) (Sum.
/-- An auxiliary function used in the definition of `orthchroMapReal`.
This function takes all elements of `` less then `-1` to `-1`,
all elements of `R` geater then `1` to `1` and peserves all other elements. -/
all elements of `R` greater then `1` to `1` and preserves all other elements. -/
def stepFunction : := fun t =>
if t ≤ -1 then -1 else
if 1 ≤ t then 1 else t
@ -152,7 +152,7 @@ lemma mul_othchron_of_not_othchron_not_othchron {Λ Λ' : LorentzGroup d} (h :
exact NormOne.FuturePointing.metric_reflect_not_mem_not_mem h h'
/-- The product of an orthochronous Lorentz transformations with a
non-orthochronous Loentz transformation is not orthochronous. -/
non-orthochronous Lorentz transformation is not orthochronous. -/
lemma mul_not_othchron_of_othchron_not_othchron {Λ Λ' : LorentzGroup d} (h : IsOrthochronous Λ)
(h' : ¬ IsOrthochronous Λ') : ¬ IsOrthochronous (Λ * Λ') := by
rw [not_orthochronous_iff_le_zero, LorentzGroup.inl_inl_mul]
@ -161,7 +161,7 @@ lemma mul_not_othchron_of_othchron_not_othchron {Λ Λ' : LorentzGroup d} (h : I
exact NormOne.FuturePointing.metric_reflect_mem_not_mem h h'
/-- The product of a non-orthochronous Lorentz transformations with an
orthochronous Loentz transformation is not orthochronous. -/
orthochronous Lorentz transformation is not orthochronous. -/
lemma mul_not_othchron_of_not_othchron_othchron {Λ Λ' : LorentzGroup d} (h : ¬ IsOrthochronous Λ)
(h' : IsOrthochronous Λ') : ¬ IsOrthochronous (Λ * Λ') := by
rw [not_orthochronous_iff_le_zero, LorentzGroup.inl_inl_mul]