refactor: Spellings
This commit is contained in:
parent
4cd71f5ec6
commit
4a55351b72
33 changed files with 88 additions and 88 deletions
|
@ -29,7 +29,7 @@ variable {d : ℕ}
|
|||
/-- Notation for `minkowskiMatrix`. -/
|
||||
scoped[minkowskiMatrix] notation "η" => minkowskiMatrix
|
||||
|
||||
/-- The Minkowski matrix is self-inveting. -/
|
||||
/-- The Minkowski matrix is self-inverting. -/
|
||||
@[simp]
|
||||
lemma sq : @minkowskiMatrix d * minkowskiMatrix = 1 := by
|
||||
simp only [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, diagonal_mul_diagonal]
|
||||
|
@ -55,8 +55,8 @@ lemma sq : @minkowskiMatrix d * minkowskiMatrix = 1 := by
|
|||
lemma eq_transpose : minkowskiMatrixᵀ = @minkowskiMatrix d := by
|
||||
simp only [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, diagonal_transpose]
|
||||
|
||||
/-- The deteminant of the Minkowski matrix is equal to `-1` to the power
|
||||
of the number of spactial dimensions. -/
|
||||
/-- The determinant of the Minkowski matrix is equal to `-1` to the power
|
||||
of the number of spatial dimensions. -/
|
||||
@[simp]
|
||||
lemma det_eq_neg_one_pow_d : (@minkowskiMatrix d).det = (- 1) ^ d := by
|
||||
simp [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal]
|
||||
|
@ -68,7 +68,7 @@ lemma η_apply_mul_η_apply_diag (μ : Fin 1 ⊕ Fin d) : η μ μ * η μ μ =
|
|||
| Sum.inl _ => simp [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal]
|
||||
| Sum.inr _ => simp [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal]
|
||||
|
||||
/-- The Minkowski matix as a block matrix. -/
|
||||
/-- The Minkowski matrix as a block matrix. -/
|
||||
lemma as_block : @minkowskiMatrix d =
|
||||
Matrix.fromBlocks (1 : Matrix (Fin 1) (Fin 1) ℝ) 0 0 (-1 : Matrix (Fin d) (Fin d) ℝ) := by
|
||||
rw [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, ← fromBlocks_diagonal]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue